首页|一种基于循环时空深度神经网络的手势识别方法

一种基于循环时空深度神经网络的手势识别方法

扫码查看
针对表面肌电信号解码模型因缺乏时空信息等重要性表征,面临解码精度低、鲁棒性差等问题,提出了一种基于循环时空深度神经网络的手势识别模型,来提高挖掘表面肌电信号的表征能力.首先,设计多通道卷积神经网络,并融入双向循环神经网络来提取强判别力的时空特征信息.其次,采用通道注意力机制来捕捉时空特征中通道重要性信息,设计基于时空特征的注意力模块以进一步增强时空特征信息.同时,基于特征金字塔网络思想来设计多尺度特征融合模块,从多尺度、多角度获取多级特征信息,提高模型对肌电信号的解码能力.最后,将所提出的手势识别模型在大型手势识别数据库Ninapro上进行测试,结果表明所提方法能有效提高对表面肌电信号的表征挖掘能力,为人体手势动作识别的深度学习建模工作提供借鉴意义.
A Gesture Recognition Method Based on Recurrent Spatiotemporal Depth Neural Network
To solve the problem of weak robustness and low precision of existing hand gesture recognition models induced by lack of spa-tiotemporal information,a hand gesture recognition model based on recurrent spatial and temporal deep neural network is proposed to improve the characterization ability for surface EMG(sEMG)signals.Firstly,a multi-channel convolutional neural network is designed and integrated into the bidirectional recurrent neural network to extract the spatiotemporal characteristics information with strong dis-crimination.Secondly,channel attention mechanism is used to catch the channel importance information in spatiotemporal characteris-tics,then an attention module based on spatiotemporal characteristics is designed to further enhance the spatiotemporal characteristics information.Thirdly,based on the ideology of feature pyramid network,a multi-scale feature fusion module is designed to acquire multi-stage feature information based on multi-scale and multi-angle aspects to improve the decoding ability of the model to electromyography signals.Finally,the proposed hand gesture recognition model is tested based on a large hand gesture recognition database of Ninapro.The results show that the representation capability for sEMg signals is effectively improved by the proposed method.It provides reference for the deep learning modeling work of human body hand gesture recognition.

gesture recognitionsurface electromyography signalsneural networkfeature fusionattention mechanism

杨旭升、范京哲、胡佛、张文安

展开 >

浙江工业大学信息工程学院,浙江 杭州 310023

手势识别 表面肌电信号 神经网络 特征融合 注意力机制

浙江省"尖兵""领雁"研发攻关计划项目国家自然科学基金项目

2022C0311461903335

2024

传感技术学报
东南大学 中国微米纳米技术学会

传感技术学报

CSTPCD北大核心
影响因子:1.276
ISSN:1004-1699
年,卷(期):2024.37(2)
  • 26