首页|基于MEEMD的MEMS陀螺仪降噪方法

基于MEEMD的MEMS陀螺仪降噪方法

扫码查看
为了有效抑制微机械陀螺仪的随机误差,基于改进的经验模态分解(MEEMD),结合粒子群优化算法(QPSO)优化的卡尔曼滤波(KF),提出了一种微机械陀螺仪降噪方法.通过引入排列熵的概念对微机械陀螺信号进行分解得到本征模态分量;计算各分量排列熵,分析排列熵变化趋势筛选出信号噪声混叠的分量,对其中混叠的分量分析建模,采用QPSO-KF算法滤波去噪;再对滤波结果和信号主导的分量进行重构,实现微机械陀螺信号降噪.实验验证了所提方法的有效性,相比传统经验模态分解(EMD)、KF精度提高了1个数量级,验证了所提方法的有效性和精度.
MEMS Gyro Noise Reduction Method Based on MEEMD
In order to effectively suppress the random errors of micromechanical gyroscopes,an improved noise reduction method for mi-cromechanical gyroscopes is proposed based on improved empirical mode decomposition( MEEMD) combined with particle swarm opti-mization algorithm( QPSO) optimized Kalman filtering( KF) . The micromechanical gyro data are decomposed by MEEMD to obtain the eigenmode components,which are classified by using the multiscale entropy algorithm,and the QPSO-KF algorithm is applied to the sig-nal noise mixed components among them. Then,the filtering results and the signal-dominated components are reconstructed to realize the micromechanical gyro signal noise reduction. The experiments verify the effectiveness of the method,and compared with the traditional empirical modal decomposition( EMD) ,KF accuracy is improved by 1 orders of magnitude,verifying the effectiveness and accuracy of the proposed method.

micromechanical( MEMS) gyroscopeempirical modal decompositionmulti-scale entropyparticle swarm optimizationKalman filtering

侯梦婷、王雪梅、单斌、许哲、李灿、郑雨晞子

展开 >

火箭军工程大学导弹工程学院,陕西 西安710025

微机械(MEMS)陀螺仪 经验模态分解 多尺度熵 粒子群优化 卡尔曼滤波

陕西省自然科学基础研究计划

2020JQ-491

2024

传感技术学报
东南大学 中国微米纳米技术学会

传感技术学报

CSTPCD北大核心
影响因子:1.276
ISSN:1004-1699
年,卷(期):2024.37(3)
  • 14