首页|不同颜色风力机叶片缺陷检测系统研究与验证

不同颜色风力机叶片缺陷检测系统研究与验证

扫码查看
针对目前风力机叶片缺陷检测方法检测精度低、危险系数大、设备价格高等问题,提出一种基于LabVIEW+无人机的风力机叶片缺陷检测系统,实现了硬件平台搭建和系统软件设计,对图像处理算法进行研究,针对传统二值化算法中不同颜色风力机叶片阈值不同的问题,提出了应用边缘提取的检测方法.通过理论分析和实验对比了LabVIEW中边缘提取缺陷检测算子及组合算子的检测效果,并最终确定Sobel算子应用于本风力机叶片缺陷检测系统.实验表明,该系统能够实现不同颜色风力机叶片缺陷的自动、低成本检测,检测精度高达93%.
Research and Verification of the Defect Detection System of Wind Turbine Blade in Different Color
Targeting at the problems of low detection accuracy,high risk factor and high equipment price of current detection methods for wind turbine blade defects,an unmanned aerial vehicle( UAV) detection system for wind turbine blade defects based on LabVIEW is presented. In this system the hardware platform and system software design are implemented,the image processing algorithm is studied, and the detection method using edge extraction is also proposed to solve the problem that different color threshold values of wind turbine blades are different in the traditional binary algorithm. The detection results of edge extraction defect detection operator and combination operator in LabVIEW are compared through theoretical analysis and experiments,and the Sobel operator is finally determined to be ap-plied to this wind turbine blade defect detection system. Experiments show that the system can detect the defect of different color wind turbine blades automatically and at low cost,and the detection accuracy is up to 93%.

defect detectionwind turbine bladesobel operatorUAValgorithm verification of Labview

严海领、刘雄飞、李密兰

展开 >

银川科技学院信息工程学院,宁夏 银川750001

缺陷检测 风力机叶片 Sobel算子 无人机 LabVIEW算法验证

宁夏高校科研项目宁夏高校科研项目已授权国家实用新型专利项目

NGY2022005NGY2018-264202221792362.5

2024

传感技术学报
东南大学 中国微米纳米技术学会

传感技术学报

CSTPCD北大核心
影响因子:1.276
ISSN:1004-1699
年,卷(期):2024.37(3)
  • 13