首页|基于新型柔性触觉传感器的摩尔斯电码分类识别研究

基于新型柔性触觉传感器的摩尔斯电码分类识别研究

扫码查看
触觉是人类与外界联系的重要方式,在人机交互系统中赋予机器人触觉感知能力具有重要意义.基于聚偏氟乙烯(Polyvinylidene fluoride,PVDF)的压电特性、利用 3D打印技术、设计并制备了一种具有高灵敏度(15.02 mV/N)的新型压电式柔性触觉传感器.通过在传感器表面轻敲"0~9"数字的摩尔斯电码,采集 3 000 组传感器输出的 4 000 维电压时序信号作为实验样本集.在此基础上构建具有强大特征提取能力的卷积神经网络(Convolutional Neural Network,CNN)与门控循环单元(Gated Recurrent Unit,GRU)的融合网络模型CNN-GRU,用以实现对数字"0~9"摩尔斯电码的识别,其平均识别准确率为98.17%.实验结果表明,所研究的新型柔性触觉传感器能够准确感知并区分不同摩尔斯电码的敲击模式,具有优良时序记忆能力的CNN-GRU模型能够很好地应用于柔性触觉传感器不同接触模式的分类识别.
Morse Code Classification and Recognition Based on a Novel Flexible Tactile Sensor
Tactile perception is an important way for people to connect with the outside world.it is important to give the robot touch per-ception ability in the human-machine interaction system.Based on the piezoelectric characteristics of polyvinylidene fluoride(PVDF),a new piezoelectric flexible touch sensor with high sensitivity(15.02 mV/N)is designed and prepared by using 3D printing technology.By tapping the Morse code of the"0-9"number on the surface of the sensor,the 4 000-dimensional voltage time series signals from 3 000 sets of sensors are collected as the experimental sample set.On this basis,a fusion network model of Convolutional Neural Net-work(CNN)and Gated Recurrent Unit(GRU)with strong feature extraction ability is constructed,which is used to recognize the Morse code of the number"0~9",and the average recognition accuracy is 98.17%.The results show that the new flexible tactile sensor studied can accurately perceive and distinguish the knock modes of different Morse codes,CNN-GRU can be well applied to the classification and recognition of contact modes of flexible tactile sensors because of its time series memory ability.

piezoelectric flexible tactile sensorclassification recognitionCNN-GRU ModelMorse codecontact mode

王菲露、孙牛平、宋杨、蒋秀丽、章王勇、章英

展开 >

安徽建筑大学电子与信息工程学院,安徽 合肥 230601

压电式柔性触觉传感器 分类识别 CNN-GRU模型 摩尔斯电码 接触模式

安徽省高等学校自然科学研究重点项目安徽省住房城乡建设科学技术计划安徽省住房城乡建设科学技术计划安徽省新时代育人(研究生教育)质量工程项目安徽省新时代育人(研究生教育)质量工程项目安徽省新时代育人(研究生教育)质量工程项目安徽建筑大学质量工程项目

2023AH0501802021-YF242022-YF1682022qyw/sysfkc0292023szsfkc1032023xscx1112023jy15

2024

传感技术学报
东南大学 中国微米纳米技术学会

传感技术学报

CSTPCD北大核心
影响因子:1.276
ISSN:1004-1699
年,卷(期):2024.37(4)
  • 29