首页|基于特征融合与注意力机制的CNN抑郁症识别

基于特征融合与注意力机制的CNN抑郁症识别

扫码查看
快速准确识别、筛查和预警轻度抑郁症具有重要现实意义,利用脑电数据和深度学习算法可以对精神心理疾病进行机器识别.提出一种基于特征融合的卷积神经网络(CNN)模型,实现抑郁症的有效识别.将注意力机制引入CNN模型,提取高效的时空特征图,增强特征的多样性,降低个体差异性的影响.结果表明:采用脑电gamma节律,模型对抑郁症平均识别准确率达到(99.39±0.14)%.此外,通过对卷积层特征图的可视化分析,获得了抑郁症和正常被试脑电差异性电极,并进行少电极抑郁症分类,识别准确率达到(91.41±1.11)%.由此可见,该深度学习模型能够对轻度抑郁症进行有效识别和筛查.
Depression Recognition with CNN Based on Feature Fusion and Attention Mechanism
It is of great practical significance to quickly and accurately identify,screen and early warn mild depression.By using EEG data and deep learning algorithm mental and psychological diseases can be machine-identified.A convolutional neural network(CNN)model based on feature fusion to effectively recognize depression.The attention mechanism is introduced into the CNN model to extract efficient spatio-temporal feature maps,enhance feature diversity and reduce the impact of individual differences.The results show that the average recognition accuracy of the model for depression reaches(99.39±0.14)%using EEG gamma rhythm.In addition,through the visual analysis of the convolutional layer feature map,the EEG differential electrodes of depression and normal subjects are ob-tained,and the depression classified with few electrodes,with the recognition accuracy of(91.41±1.11)%,showing that the deep learning model can effectively identify and screen mild depression.

machine learningdepression recognitionconvolution neural networkattention mechanismfeature fusion

尚照岩、乔晓艳

展开 >

山西大学物理电子工程学院,山西 太原 030006

机器学习 抑郁症识别 卷积神经网络 注意力机制 特征融合

2024

传感技术学报
东南大学 中国微米纳米技术学会

传感技术学报

CSTPCD北大核心
影响因子:1.276
ISSN:1004-1699
年,卷(期):2024.37(4)
  • 15