首页|视觉传感器提取面部运动特征的抑郁症检测算法研究

视觉传感器提取面部运动特征的抑郁症检测算法研究

扫码查看
尽管抑郁症自动诊断系统已经取得了重大进展,但大部分工作集中在结合多种模态的特征来提高分类精度,这会产生大量的时空开销和特征同步问题.提出了一种基于面部表情和面部运动特征的单模态抑郁症检测框架.提出了一种基于面部标志比的鲁棒特征提取方法,并从理论上证明了该特征具有上下、左右平移、深度平移、旋转和翻转不变性.基于该方法提取的特征保持了面部标志点在空间上的拓扑结构关系,并保持了面部标志点前后帧的时间相关性.然后,提出了一种新颖的思路来解决大单元抑郁症视频的分类任务,将大单元视频的抑郁症分类任务分解为多个短序列单元的评分任务,然后通过定义的评分聚合函数得到最终的抑郁症分类结果.在 DAIC-WOZ 数据集上,所提出的检测框架提高了分类性能,F1 得分为0.85,优于当前其他基于单模态的抑郁症检测模型.
Research on Depression Detection Algorithm Based on Facial Motion Features Extracted by Vision Sensor
Although significant progress has been made in automatic diagnosis systems for depression,most of the work focuses on combi-ning features from multiple modalities to improve classification accuracy,which generates a lot of space-time overhead and feature synchro-nization problems.A unimodal depression detection framework based on facial expression and facial motion features is proposed.Firstly,a robust feature extraction method based on the ratio of facial landmark is proposed and it is theoretically proved that this feature has up-down,left-right translation,depth translation,rotation,and flip invariance.The features extracted based on the proposed method maintain the topological structure relationship of facial landmarks in space and maintain the temporal correlation of frames before and after facial landmarks.Then,a novel idea is provided to solve the classification task of large-unit depression videos.The final depression classification result is obtained by decomposing the depression classification task of large-unit videos into the scoring task of multiple short-sequence u-nits and then through the defined score aggregation function.On the DAIC-WOZ dataset,the proposed detection framework improves the classification performance,with an F1 score of 0.85,outperforming other current unimodal-based depression detection models.

depression classificationaffective computingvideo processingface landmarkshallow CNN

周卫元、姚海峰、张闰哲、陈锐霆、毛科技、赵永标

展开 >

浙江开放大学萧山学院,浙江 杭州 311200

绍兴市越城区消防救援大队,浙江 绍兴 312000

浙江工业大学计算机科学与技术学院,浙江 杭州 310023

杭州惠嘉信息科技有限公司,浙江 杭州 311121

浙江工业大学之江学院,浙江 绍兴 312030

展开 >

抑郁症检测 情感计算 视频处理 面部标志点 浅层CNN

浙江省基础公益研究计划浙江省基础公益研究计划国家自然科学基金

LTGG23F020002LGG22F02001462072410

2024

传感技术学报
东南大学 中国微米纳米技术学会

传感技术学报

CSTPCD北大核心
影响因子:1.276
ISSN:1004-1699
年,卷(期):2024.37(4)
  • 29