首页|微纳电极阵等离子体微系统

微纳电极阵等离子体微系统

扫码查看
发现微纳尺度结构效应能调控电荷分布,在空间中激励形成极化带电场,极化带电场中原子、分子间相互作用的特异性产生了极化带效应.设计产生极化带效应的微纳电极阵结构,通过非硅微/纳加工技术集成形成微纳电极阵等离子体微系统(NPMEMS),NPMEMS可集中或分布式地调控物质状态、产生极化带等离子体,利用其特殊的理化性能可大幅提高应用系统效率,或解决多个领域中应用技术的机理性难题.
Micro/Nano Electrode Array Plasma MEMS
We find that effects resulted from micro/nano scale structures can regulate space charges which excite and lead to the electric field distribution featuring the flux convergence band structure. It is here referred to as the polarization band effect,which stems from the specific field induced interactions among atoms and molecules. The micro/nano electrode array structures are designed and fabricated by using the non-silicon micro/nano processing technology, forming nanoelectrode arrays-based plasma microelectromechanical systems ( NPMEMS) . The integrated NPMEMS device can be used to regulate inner energy states of matters and generate plasma based on the polarization band effect,all within a single chip-size limited local area or extending into a large volume space with the deployment of a distributed array of multiple devices. Its special physical and chemical properties can be utilized to greatly improve the efficiency of po-tential application systems or solve mechanism-level challenges in plasma-related applications of multiple fields.

MEMSmicro/nano electrode arrayplasma

丁衡高、侯中宇

展开 >

中国工程院

上海交通大学微米纳米加工技术全国重点实验室,上海 200240

微机电系统 微纳电极阵 等离子体

2024

传感技术学报
东南大学 中国微米纳米技术学会

传感技术学报

CSTPCD北大核心
影响因子:1.276
ISSN:1004-1699
年,卷(期):2024.37(5)