首页|一种用于癫痫发作状态检测的可穿戴脑电传感器

一种用于癫痫发作状态检测的可穿戴脑电传感器

扫码查看
针对癫痫患者多场景下的健康监护问题,研发了一种无线可穿戴脑电传感器,可以在本地实时识别癫痫发作.该传感器首先使用ADS1299模数转换芯片采集脑电信号,在STM32F4微处理器中使用工频陷波器和带通滤波器对脑电信号进行实时滤波,然后周期性地提取不同频段的Hjorth特征得到特征向量,利用支持向量机(Support Vector Machine,SVM)分类器进行癫痫发作识别,最后通过低功耗蓝牙(BLE)将癫痫发作状态发送到外部设备,联动外部设备实现癫痫发作报警.为了能够实现实时识别癫痫发作,从STM32的架构和中断机制入手对数据传输和算法执行进行了优化.经CHB-MIT癫痫数据集测试,该传感器可以实时、有效地识别癫痫发作状态,平均识别准确率达97%.
A Wearable EEG Sensor for Epilepsy Seizure State Detection
For the health monitoring of epilepsy patients in multiple scenarios,a wireless wearable EEG sensor is designed that can iden-tify seizures locally and in real time. Firstly,the analog-to-digital converter of ADS1299 is used to sample EEG signals. Simultaneously, EEG signals are filtered in real time using a 50-Hz notch filter and a band-pass filter by a local microprocessor of STM32F4. Afterward, Hjorth features are extracted periodically in different frequency bands of the filtered EEG signals to obtain a feature vector. Eventually, the epileptic seizure status is recognized by using Support Vector Machine( SVM) and is sent to external devices via low-power Bluetooth ( BLE) . External devices will take necessary actions to inform guardians when epileptic seizures are appearing. The data transmission and algorithm execution are optimized by taking the advantage of the architecture and interrupt mechanism of STM32 to realize real-time seizure detection. The validation is tested on CHB-MIT epileptic dataset. The result shows that the sensor can recognize the epileptic seizure status in real time and effectively with an average recognition accuracy of 97%.

EEG sensorseizure detectionADS1299wearable device

戴壮壮、何宏、汪焰兵

展开 >

上海理工大学健康科学与工程学院,上海 00093

脑电传感器 癫痫发作识别 ADS1299 可穿戴设备

国家科技部项目上海市科学技术委员会项目上海理工大学医工交叉重点项目上海理工大学医工交叉重点项目

G20210130081807050300010203084051022308502

2024

传感技术学报
东南大学 中国微米纳米技术学会

传感技术学报

CSTPCD北大核心
影响因子:1.276
ISSN:1004-1699
年,卷(期):2024.37(5)