首页|加权多源域对抗迁移学习运动想象脑电识别

加权多源域对抗迁移学习运动想象脑电识别

扫码查看
运动想象脑电信号个体差异大且数据采集成本高,构建小样本、跨被试的运动想象脑电识别模型是脑机接口中需要解决的关键问题.针对小样本跨领域学习,提出一种基于预对齐策略和对抗迁移学习的加权多源域自适应方法,把迁移学习和对抗训练相结合,将域对抗神经网络扩展到多源域,对各源域进行皮尔逊相关系数加权,实现多个源域和目标域在特征上的加权对齐,并采用预对齐策略提高域间数据分布的一致性.在BCI Competition运动想象数据集上,跨被试的运动想象任务识别正确率达到84.43%,与不迁移方法相比提高了9.17%,相较于域对抗神经网络提高了5.0%.实验结果表明,所提方法能够有效减小不同被试间脑电数据分布以及特征分布差异,实现数据和特征双重对齐,从而提升跨被试运动想象脑电分类性能.
Weighted Multi-Source Domain Adversarial Transfer Based Learning Motor Imagery EEG Recognition
Motor imagery EEG signals have large individual differences and high data collection costs, and building a small sample, cross-subject motor imagery EEG recognition model is a key problem in Brain-Computer Interfaces. A weighted multi-source domain adaptive method is proposed based on pre-alignment strategy and adversarial transfer learning for small sample,cross-domain learning, which combines transfer learning and adversarial training,extends the domain adversarial neural network to multiple source domains, weights the pearson correlation coefficient for each source domain to achieve weighted alignment of multiple source domains and target domains in features,and uses the pre-alignment strategy to improve the consistency of data distribution between domains. On the BCI competition motor imagery dataset,the recognition accuracy of cross-subject motor imagery task reaches 84.43%,which is 9.17% higher than that of the non-transfer method and 5.0% higher than that of the domain adversarial neural network. The experimental results show that the proposed method can effectively reduce the differences in EEG data distribution and feature distribution between different sub-jects,and achieve double alignment of data and features,thus improving the cross-subject motor imagery EEG classification performance.

motor imageryadversarial transfer learningweighted multi-source domaincross-subjects

冯洋、乔晓艳

展开 >

山西大学物理电子工程学院,山西 太原 030006

运动想象 对抗迁移学习 加权多源域 跨被试

山西省回国留学人员科研资助项目太原市小店区产学研合作科技专项项目

2020-0092019-06

2024

传感技术学报
东南大学 中国微米纳米技术学会

传感技术学报

CSTPCD北大核心
影响因子:1.276
ISSN:1004-1699
年,卷(期):2024.37(5)