首页|基于YOLOv5s与扩展卡尔曼滤波的人体跟踪器设计

基于YOLOv5s与扩展卡尔曼滤波的人体跟踪器设计

扫码查看
YOLOv5s在COCO数据集上的预训练权重可以检测出人体目标,然而对于特殊的人体姿态无法识别.提出了一种基于YOLOv5s与扩展卡尔曼滤波的跟踪器,当YOLOv5s能检测出人体目标时,对扩展卡尔曼滤波进行初始化,当YOLOv5s无法检测时,由扩展卡尔曼滤波进行跟踪,在先验结果创建候选区域,使用差异值哈希匹配出最优候选区域作为观测值,从而更新目标位置,实现人体检测的连续性.实验结果表明,在跟踪精度上所提出的跟踪器与"真实边界框"的重叠率为50.65%,中心位置误差为51.78像素,在实时性上优于KCF和TLD跟踪器,帧率比KCF跟踪器快了26 frame/s.
A Human Tracker Based on YOLOv5s and the Extended Kalman Filter
YOLOv5s's pre-training weight on the COCO dataset can detect human targets,while failing to recognize specific human po-ses. A human tracker based on YOLOv5s and the extended Kalman filter is proposed. When YOLOv5s can detect the human object,the extended Kalman filter is initialized. When YOLOv5s cannot detect,the extended Kalman filter is used to track,and the candidate re-gion is created in the prior results. The optimal candidate region is matched by using the different hash algorithm as the observation val-ue,to update the target position and realize the continuity of human detection. The experimental results show that in terms of tracking accuracy,the overlap rate between the proposed tracker and the"real boundary box"is 50.65%,and the center position error is 51.78 pixels. The real-time performance is better than that of the KCF and TLD trackers,and the frame rate is 26 frames per second faster than that of the KCF tracker.

YOLOv5sextended Kalman filterobject trackerdifferent hash algorithm

徐振宇、蔡敏雅、陈子钰、秦晋

展开 >

浙江树人学院信息科技学院,浙江 杭州 310015

杭州电子科技大学新型电子器件与应用研究所,浙江 杭州 310018

杭州派尼澳电子科技有限公司,浙江 杭州 310018

YOLOv5s 扩展卡尔曼滤波 目标跟踪 差异值哈希

浙江树人学院省属高校基本科研业务费专项资金项目

2022XZ015

2024

传感技术学报
东南大学 中国微米纳米技术学会

传感技术学报

CSTPCD北大核心
影响因子:1.276
ISSN:1004-1699
年,卷(期):2024.37(5)