首页|基于双向LSTM神经网络的可穿戴跌倒预警研究

基于双向LSTM神经网络的可穿戴跌倒预警研究

扫码查看
为了在老年人跌倒之前进行预判并及时触发跌倒防护气囊,防止跌倒对老年人身心造成严重伤害,提出了基于双向长短期记忆神经网络的轻量级跌倒预测算法,采用深度学习模型自动提取加速度计数据深层特征,省去因人工提取跌倒数据特征所消耗的时间,提升了跌倒预测模型的泛化能力.首先根据跌倒落地时刻和前置时间截取数据窗口作为输入;其次设计轻量级双向长短期记忆神经网络提取加速度特征并预测跌倒;最后借助TensorFlow Lite框架对模型进行轻量化改造.实验结果表明所提算法在SisFall跌倒公开数据集中获得了96.92%的准确率,95.73%的敏感度,98.15%的特异度,跌倒前置反应时间达215 ms,足以触发跌倒防护气囊.对应的TensorFlow Lite模型所占空间大小仅为62.2 kB,算法运行时间为1.20 ms,有望部署在嵌入式可穿戴终端,进行实时跌倒预测.所提算法实现了更高的预测精度并具有较长的跌倒预警时间,更适于资源受限的嵌入式设备,为老年人跌倒预测和可穿戴式跌倒保护装置的开发提供了进一步的参考.
Research on Wearable Fall Prediction Based on Bi-Directional LSTM
It is very important to predict falls before hitting on the ground and to trigger fall protective airbags timely to prevent serious physical and psychological injuries to the elderly. A lightweight fall prediction algorithm based on bi-directional long short-term memory neural networks is proposed. A deep learning model instead of manual feature extraction at the terminal is used to extract deep features of accelerometer data automatically to improve the generalization capability of the model. Firstly,the data window selected according to the fall landing moment and lead time is adopted as the input. Secondly,a lightweight bi-directional long short-term memory neural net-work is designed to extract acceleration features and predict the fall. Finally,the model is lightened with the help of TensorFlow Lite framework. Experimental results show that the new algorithm achieves an accuracy of 96.92%,a sensitivity of 95.73%,and a specificity of 98.15% on the SisFall fall public dataset with a lead time of 215 ms,and the TensorFlow Lite model for deployment to embedded ter-minals occupies only 62.2 kB in memory size with 1.2 ms running time,which is expected to be deployed in embedded terminals for re-al-time fall prediction. The proposed algorithm achieves higher prediction accuracy and longer lead time,which is more suitable for re-source-constrained embedded devices and provides a further reference for the development of fall prediction and wearable fall protection devices for the elderly.

fall predictiondeep learningbi-directional LSTMlead timewearable deviceairbag

李玲艺、潘巨龙、项睿涵、方堃

展开 >

中国计量大学信息工程学院,浙江 杭州 310018

跌倒预测 深度学习 双向LSTM 前置时间 可穿戴设备 保护气囊

浙江省基础公益研究计划项目

LGF21F020017

2024

传感技术学报
东南大学 中国微米纳米技术学会

传感技术学报

CSTPCD北大核心
影响因子:1.276
ISSN:1004-1699
年,卷(期):2024.37(5)