首页|一种传感图像特征快速挖掘算法设计

一种传感图像特征快速挖掘算法设计

扫码查看
传感图像采集因曝光而损失图像特征,导致特征错误挖掘率高和精准率召回率(Precision-Recall,PR),曲线表现较差,针对该问题,提出一种新的传感图像特征快速挖掘算法.该方法将参数化修正线性单元函数作为激活函数,融合修补图和输入图像,并在训练阶段使用L1损失函数和结构相似性指数(Structural Similarity Index,SSIM)损失函数约束图像,采用softmax回归挖掘图像特征,构建卷积神经网络传感图像特征挖掘结构,在训练过程中,使用自适应梯度更新结构参数,设计挖掘步骤,实现传感图像特征快速挖掘.实验结果表明,设计的卷积神经网络图像特征挖掘方法的PSNR值较高、SSIM值接近1,错误挖掘率为1.0%,PR曲线最接近右上角,面积最大,并且图像视觉效果更好,特征挖掘时间最高仅为1.3 s,实现了快速挖掘.
Design of a Fast Feature Mining Algorithm for Sensor Images
To solve the problem of image feature loss due to exposure during sensor image acquisition,which leads to high feature error mining rate and poor PR curve performance,a new fast sensor image feature mining algorithm is proposed. PReLU function is used as the activation function to integrate the parametric rectified linear unit and input images. The loss function and the SSIM loss function are used to constrain the image in the training stage. Softmax regression is used to mine the image features,and the convolutional neural net-work sensor image feature mining structure is constructed. AdaGrad is used to update the structural parameters,and mining steps are de-signed to realize fast mining of sensor image features. The experimental results show that the designed convolutional neural network im-age feature mining method has higher PSNR value,the SSIM value is closer to 1,the error mining rate is 1.0%,the PR curve is closest to the upper right corner,the area is the largest,the image visual effect is better,and the maximum feature mining time is only 1.3 s, which realizes fast mining.

sensing imageimage featurerapid excavationconvolution neural networkPReLU functionloss functionPR curve

郭红建、赵燕飞

展开 >

南京审计大学计算机学院,江苏 南京 211815

传感图像 图像特征 快速挖掘 卷积神经网络 PReLU函数 损失函数 PR曲线

国家自然科学基金项目面上项目江苏省高校自然科学研究项目面上项目江苏省高校人文社会科学研究项目一般项目全国高等院校计算机基础教育研究会2022年立项课题项目江苏省现代教育技术研究2022年度立项课题项目

7207411720KJB6300122021SJA03512022-AFCEC-4192022-R-106219

2024

传感技术学报
东南大学 中国微米纳米技术学会

传感技术学报

CSTPCD北大核心
影响因子:1.276
ISSN:1004-1699
年,卷(期):2024.37(5)