首页|基于遗传算法优化VMD-ESSA的HIFU回波信号降噪研究

基于遗传算法优化VMD-ESSA的HIFU回波信号降噪研究

扫码查看
由于高强度聚焦超声(HIFU)信号夹杂环境噪声,提出利用遗传算法优化变分模态分解(VMD)并结合能量均值法(EAM)及奇异谱分析(SSA)来对其进行降噪.遗传算法使得VMD具有更强的抗干扰性,奇异谱分析能够弥补能量均值去噪不完善.仿真实验表明,所提方法与GA-VMD-E、GA-VMD-SSA、VMD-ESSA降噪方法相比,重构后的信号的信噪比更高,均方根误差和最大误差更小.在实测信号中从频谱和降噪率两个角度证明了该方法的优越性,为通过HIFU回波信号分析生物组织损伤提供了一种更有效的预处理方法.
Research on HIFU Echo Signal De-Noising Based on Genetic Algorithm Optimized VMD-ESSA
Due to the high intensity focused ultrasound(HIFU)signal is mixed with environmental noise,it is proposed to use genetic al-gorithm to optimize the variational modal decomposition(VMD),combined with the energy-averaged method(EAM)and singular spec-trum analysis(SSA)to reduce its noise.Genetic algorithm makes VMD more anti-interference,and Singular spectrum analysis can make up for the imperfection of energy mean denoising.Simulation experiments show that compared with GA-VMD-E,GA-VMD-SSA,and VMD-ESSA de-noise methods,the proposed method has higher signal-to-noise ratio,and the mean square error and maximum error is smaller.The superiority of the proposed method is proved from the aspects of spectrum and noise reduction rate in the measured signal,providing a more effective preprocessing method for analyzing biological tissue damage through HIFU echo signal.

high intensity focused ultrasound(HIFU)denoisingvariational mode decomposition(VMD)genetic algorithms(GA)sin-gular spectrum analysis(SSA)

蒋智伟、赵雨洁、李吉祥、邹孝、钱盛友

展开 >

湖南师范大学物理与电子科学学院,湖南 长沙 410081

高强度聚焦超声 去噪 变分模态分解 遗传算法 奇异谱分析

国家自然科学基金项目国家自然科学基金项目

1227420011774088

2024

传感技术学报
东南大学 中国微米纳米技术学会

传感技术学报

CSTPCD北大核心
影响因子:1.276
ISSN:1004-1699
年,卷(期):2024.37(6)
  • 17