首页|面向智能交通的人车识别无线感知方法研究

面向智能交通的人车识别无线感知方法研究

扫码查看
基于无线感知技术的人车识别方法,具有部署成本低、无侵入性等优点,是智能交通系统智慧水平提升的关键手段.然而,现存人车识别无线感知方法,多以2.4 GHz无线能量数据为基础,忽视sub-GHz在该领域中的应用,且鲜有工作探讨天线高度和人车识别性能内在联系.为此,旨在厘清载波频段、天线高度与算法性能关联关系,提出基于卷积神经网络的人车识别无线感知方法(Wireless Sensing-Based Human-Vehicle Recognition with Convolutional Neural Network,WsHVR-CNN),阐明人车识别无线感知方法设计依据与多参数影响机理.实验表明,sub-GHz与2.4 GHz无线能量数据均可为人车识别无线感知方法建构奠定基础,而基于2.4 GHz频段所构的WsHVR-CNN性能最优,在天线高度为0.8 m时准确度达到98.15%.此外,所开发的数据集公开于https://github.com/TZ-mx/WiParam,为相关工作深入研究提供基础.
Research on Wireless Sensing Method of Human-Vehicle Recognition for Intelligent Transportation
The wireless sensing-based human-vehicle recognition(HVR) method has the advantages of low deployment cost and non-in-vasiveness,which is the key means to improve the intelligent level of intelligent traffic system.However,most of the existing wireless sensing methods are based on 2.4 GHz wireless energy data,ignoring the application of sub-GHz in this field,and there are few works that explore the intrinsic relationship between antenna height and algorithm performance.Therefore,to explore the relationship between different wireless carrier frequencies and antenna heights and algorithm performance,and a wireless sensing-based HVR method with convolutional neural network (WsHVR-CNN) is proposed to clarify the design criteria and multi-parameter influence mechanism of WsHVR-CNN method.Experimental results show that both sub-GHz and 2.4 GHz wireless energy data can lay the foundation for the construction of wireless sensing-based human-vehicle recognition method,and the WsHVR-CNN based on the 2.4 GHz band with the antenna height of 0.8 m has the best performance,reaching 98.15%.Additionally,a dataset developed is publicly available at https://github.com/TZ-mx/WiParam to provide the basis for in-depth study of related work.

human-vehicle recognitionwireless sensingtraffic parameter measurementconvolutional neural network

张石清、宋铭心、陈鑫权、楼亮亮、赵小明、钱小鸿

展开 >

浙江科技学院信息与电子工程学院,浙江 杭州310023

台州学院 智能信息处理研究所,浙江 台州318000

人车识别 无线感知 交通参数测量 卷积神经网络

国家自然科学基金浙江省自然科学基金浙江省大学生科技创新活动计划(新苗人才计划)台州市科技计划

61976149LGG22F0300092022R436A00421gya29

2024

传感技术学报
东南大学 中国微米纳米技术学会

传感技术学报

CSTPCD北大核心
影响因子:1.276
ISSN:1004-1699
年,卷(期):2024.37(7)
  • 1