首页|结合改进算术优化算法与小波神经网络的网络流量预测模型

结合改进算术优化算法与小波神经网络的网络流量预测模型

扫码查看
网络流量具有非线性、复杂性特征,传统方法预测精度较低.为此,提出结合改进算术优化算法IAOA与小波神经网络WNN的网络流量预测模型.利用IAOA算法对小波神经网络关键参数初值调优,有效解决常规调参易陷入局部最优的缺陷,提高学习精度和收敛速度.对标准算术优化算法进行改进,设计拉丁超立方抽样法进行种群初始化,提高种群多样性;利用余弦函数对AOA的数学优化器非线性更新,均衡算法全局搜索与局部开发;引入针对最优解的高斯变异机制,避免算法陷入局部最优.利用十个基准函数对IAOA算法进行数值仿真,证实算法能够提高搜索精度和收敛速度.而网络流量预测实验结果表明,提出的预测模型具有更高的精确度,预测性能更加稳定,能够满足网络流量预测的高精度和实时性要求.
Network Traffic Prediction Model Combined Improved Arithmetic Optimization Algorithm and Wavelet Neural Network
Network traffic has the characteristics of non-linearity and complexity,and traditional methods have a low prediction accuracy.Therefore,a network traffic prediction model combining improved arithmetic optimization algorithm( IAOA) and wavelet neural network ( WNN) is proposed.The improved arithmetic optimization algorithm is used to optimize the initial value of key parameters of wavelet neural network,which effectively solves the defect that the conventional parameter adjustment of wavelet neural network is easy to fall into local optimization,and improves the learning accuracy and convergence speed.The optimization ability of standard arithmetic opti-mization algorithm is improved,and the Latin hypercube sampling method is designed to initialize the population and improve the popu-lation diversity.The cosine function is used to update the mathematical optimizer of AOA non-linearly for equalizing the global search and local development ability.The Gaussian mutation mechanism for the optimal solution is introduced to avoid the algorithm falling into a local optimum.Ten benchmark functions are used to simulate the optimization performance of IAOA,and it is proved that the algorithm can improve the search accuracy and convergence speed.The experimental results of network traffic prediction show that the proposed prediction model has higher accuracy and more stable prediction performance and can meet the requirements of high accuracy and real-time feature of network traffic prediction.

wavelet neural networkarithmetic optimization algorithmLatin hypercube samplingGauss distributionnetwork traffic prediction

应鑫迪、厉晓华

展开 >

浙江大学信息技术中心,浙江 杭州310058

小波神经网络 算术优化算法 拉丁超立方抽样 高斯分布 网络流量预测

浙江省重点研发计划项目

2019C03005

2024

传感技术学报
东南大学 中国微米纳米技术学会

传感技术学报

CSTPCD北大核心
影响因子:1.276
ISSN:1004-1699
年,卷(期):2024.37(8)