首页|基于红外传感器的复杂场景目标自动识别方法

基于红外传感器的复杂场景目标自动识别方法

扫码查看
由于复杂场景中目标求解区域隶属度不同,导致目标识别精准度低,提出基于红外传感器的目标自动识别方法.将复杂场景中的目标特征形式转换为红外形式,输入至红外传感器中,通过目标的光线特征获取红外图像.以复杂场景目标变换特性为基础,结合采用尺度不变特征变换方法,计算场景中不同类型目标的特征权重,求解目标在不同区域范围的隶属度,将权重值与隶属度值作为对比参照,建立对比序列.计算图像质心值与区域内所有像素点的奇异值向量,按照奇异值向量大小组成序列,与预设目标参数实行比对,提取符合特征和奇异值变化表达的像素点,完成目标的高效识别.实验结果表明,所提方法的损失函数最高值仅为1.3,识别精准度最高值达到了97.8%以上,说明所提方法的识别结果与目标之间存在高度一致性,并且识别结果分辨率高、画面清晰直观.
Automatic Target Recognition in Complex Scene Based on Infrared Sensor
Due to different membership degrees of target solving regions in complex scenes,the target recognition accuracy is low.An auto-matic target recognition method based on infrared sensors is proposed.The target feature form in the complex scene is converted to the in-frared form,which is to the infrared sensor,and the infrared image is obtained through the light feature of the target.Based on the transfor-mation characteristics of objects in complex scenes,combined with the scale invariant feature transformation method,the feature weights of different types of objects in the scene are calculated,and the membership degrees of objects in different regions are calculated.The weight values and membership values are used as a comparison reference to establish a comparison sequence.The image centroid value and the singular value vector of all pixels in the region are calculated,a sequence is formed according to the size of the singular value vector,and compared with the preset target parameters,the pixel points that conform to the features and the expression of singular value changes are extracted,and efficient target recognition is completed.The experimental results show that the maximum value of the loss function of the proposed method is only 1.3,and the minimum value of recognition accuracy is more than 97.8%,indicating that the recognition results of the proposed method are highly consistent with the target,and the recognition results have high resolution,clear and intuitive images.

computer science and technologytarget identificationinfrared sensorscale-invariant feature transformation method

彭吉琼、李芳丽、熊蕾

展开 >

江西科技学院信息工程学院,江西 南昌330098

计算机科学与技术 目标识别 红外传感器 尺度不变特征变换方法

新工科背景下基于CBE模式的《大学计算机基础》课程改革研究项目

JXJG-21-24-1

2024

传感技术学报
东南大学 中国微米纳米技术学会

传感技术学报

CSTPCD北大核心
影响因子:1.276
ISSN:1004-1699
年,卷(期):2024.37(8)