首页|卡尔曼滤波下多源传感器数据互补-加权迭代融合算法

卡尔曼滤波下多源传感器数据互补-加权迭代融合算法

扫码查看
因多源传感器在数据融合过程中,受自身数据差异性影响较大,导致最终的融合结果精准度较低.为此,在卡尔曼滤波算法的基础上,针对多源传感器数据提出一种互补-加权迭代融合算法.建立多源传感器观测模型,找出数据融合过程中的最优加权系数.在多源传感器组合系统中引入卡尔曼滤波算法,结合互补-加权迭代融合算法,建立预测方程、状态方程、滤波互补因子以及估计均方误差方程,实现多源传感器的数据融合.实验结果表明,所提算法可以精准找出最优加权系数,观测误差始终在0.6 m以下,可以实现数据的精准融合.
Complementary Weighted Iterative Fusion Algorithm for Multi Source Sensor Data Based on Kalman Filtering
Because multi-source sensors are greatly affected by their own data differences in the data fusion process,resulting in low accu-racy of the final fusion results.Therefore,based on Kalman filtering algorithm,a complementary weighted iterative fusion algorithm is pro-posed for multi-source sensor data.The multi-source sensor observation model is established to find the optimal weighting coefficient in the data fusion process.Kalman filtering algorithm is introduced into multi-source sensor combination system,combined with complementary weighted iterative fusion algorithm,prediction equation,state equation,filter complementary factor and estimation mean square error equa-tion are established to achieve multi-source sensor data fusion.The experimental results show that the proposed algorithm can accurately find the optimal weighting coefficient,and the observation error is always below 0.6 m,which can achieve accurate data fusion.

multi source sensordata complementary weighted iterative fusionKalman filtering algorithmequation of stateoptimal weighting coefficient

唐启涛、戴小鹏、罗莉霞

展开 >

湖南信息学院数据科学与大数据技术系,湖南 长沙410010

多源传感器 数据互补-加权迭代融合 卡尔曼滤波算法 状态方程 最优加权系数

2021年湖南省十四五教育科学规划课题项目

XJK21CXX005

2024

传感技术学报
东南大学 中国微米纳米技术学会

传感技术学报

CSTPCD北大核心
影响因子:1.276
ISSN:1004-1699
年,卷(期):2024.37(8)