首页|基于注意力机制与特征融合的遥感图像场景分类

基于注意力机制与特征融合的遥感图像场景分类

扫码查看
针对遥感图像场景分类任务中训练样本少、地物与背景的关系表示不足的问题,提出一种基于特征融合的遥感图像场景分类方法.在ImageNet上预先训练好的卷积神经网络作为特征提取器,引入注意力机制突出空间位置信息,强化上下文关系,增强特征表达.增强后的卷积特征与全连接层特征进行融合,并用于场景分类.在UC Merced数据集上的实验结果表明,该方法生成的图像特征融合表达具有良好的辨识度.其后,将所提方法应用于高分二号卫星影像土地利用分类任务,总体分类精度达到92.83%,达到了与其他先进方法相当的性能.
Remote Sensing Image Scene Classification Based on Attention Mechanism and Feature Fusion
Aiming at the problems of limited training samples and insufficient representation of the relationship between ground objects and background in the remote sensing image scene classification task,a feature fusion method for remote sensing image scene classifica-tion is proposed.Firstly,a convolutional neural network(CNN)pretrained on ImageNet dataset is employed as a feature extractor.Addi-tionally,an attention mechanism is introduced to highlight the spatial location information,strengthen the contextual relationship,and en-hance the feature expression.Subsequently,the enhanced convolution features are fused with the fully connected layer features and used for scene classification.Thereby,the proposed method obtains a fused feature expression with good discriminability,which is demonstra-ted through experiment on the UC Merced dataset.Later,it is applied to the land use classification task of Gaofen-2 satellite images.The overall classification accuracy reaches 92.83%,and its performance is on a par with that of other advanced methods.

remote sensing imagescene classificationattention mechanismfeature fusionconvolutional neural network

杨松、王晓晖、王晓燕、顾相平

展开 >

淮阴工学院电子信息工程学院,江苏淮安 223001

遥感图像 场景分类 注意力机制 特征融合 卷积神经网络

2024

传感技术学报
东南大学 中国微米纳米技术学会

传感技术学报

CSTPCD北大核心
影响因子:1.276
ISSN:1004-1699
年,卷(期):2024.37(12)