首页|改进YOLOv5框架的交通标志检测算法

改进YOLOv5框架的交通标志检测算法

扫码查看
针对传统YOLOv5算法识别交通标志精度低的问题,提出了一种改进的YOLOv5模型.首先,在骨干网络中加入CA注意力机制,考虑了通道信息和方向相关的位置信息,提高检测精度;然后,引入了 DIoU_NMS,它将中心点考虑进来保留更多的矩形框,提高遮掩重叠交通标志的识别精度;其次,加入了递归门控卷积,实现关键特征之间的高阶交互;最后,在三个输出检测的基础上增加了一个小目标检测头,增强小目标检测的性能.改进后的YOLOv5s算法在交通标志数据集TT100K上训练,经过实验后,改进后的模型训练的mAP值为86.96%,相比于原始YOLOv5提升了 2.79%.同时,将所提算法与近几年主流算法进行对比,结果表明,改进后的算法在交通标志识别方面具有较好的竞争力.
Traffic Sign Detection Algorithm Based on Improved YOLOv5 Framework
Aiming at the low precision of the conventional YOLOv5 algorithm in recognizing traffic signs,a new YOLOv5 model is pres-ented.Firstly,the coordinate attention mechanism is introduced into the backbone network,considering both channel information and po-sition information related to direction,thus improving the accuracy of detection.The DIoU_NMS is introduced,which takes into account the center point and retains more rectangular boxes,improving the recognition accuracy of obscuring overlapping traffic signs.Finally,in order to improve the small target detection ability,a small target detection head based on three output detection is added.The improved YOLOv5s algorithm is trained on the traffic sign dataset of TT100K(Tsinghua-Tencent 100K),and the experimental results show that mAP value of the improved model is 86.96%after training,which is 2.79%over that of the original YOLOv5.Meanwhile,a comparison is made between the proposed algorithm and other major algorithms,and the results indicate that the proposed method has better perfor-rmed in traffic sign recognition.

image processingtraffic sign recognitionyolov5coordinate attention mechanismdiou_nmsrecursive gated convolutions

兰天、欧阳嘉泰、何宇豪、易方旭、易明发、王冠凌

展开 >

安徽工程大学电气工程学院,安徽芜湖 241000

图像处理 交通标志识别 YOLOv5 CA注意力机制 DIoU_NMS 递归门控卷积

2024

传感技术学报
东南大学 中国微米纳米技术学会

传感技术学报

CSTPCD北大核心
影响因子:1.276
ISSN:1004-1699
年,卷(期):2024.37(12)