首页|最小二乘拟合的红外图像去噪算法

最小二乘拟合的红外图像去噪算法

扫码查看
为了去除红外图像中脉冲噪声的同时,更有效地保持和恢复图像的边缘信息和纹理特征,提出了一种基于最小二乘拟合的红外图像去噪算法.根据脉冲噪声的先验模型和像素的局部偏差进行噪声检测,将满足噪声先验条件且局部偏差较大的像素识别为噪声.对于每一噪声像素,用其邻域中的非噪声像素进行最小二乘拟合,用拟合函数的中值作为当前噪声像素的灰度估计值.实验结果显示,相对干部分现有方法,所提方法的去噪图像视觉效果更清晰,去噪所得的PSNR和FSIM值更高,比现有方法分别高出1.5 dB和0.7%以上,因此具有更好的去噪性能.
Infrared Image Denoising Algorithm Based on Least Square Fitting
In order to remove the impulse noise in the infrared image and more effectively preserve and restore the edge information and texture features of the image,an infrared image denoising algorithm based on least square fitting is proposed.Noise detection is per-formed according to the prior model of impulse noise and the local deviation of pixels,and pixels that meet the prior conditions of noise and have large local deviation are recognized as noise.For each noisy pixel,its neighboring noise free pixels are used for least square fit-ting,and the median value of the fitting function is used as the intensity estimation value of the current noisy pixel.Experimental results show that compared with some existing methods,the visual effect of image denoised by the proposed method is clearer,the PSNR and FSIM obtained by the proposed method are higher,being 1.5 dB and 0.7%higher than those of the existing methods,respectively,thus,the proposed method has better denoising performance.

infrared image denoisinglocal deviationleast square fittingfeature similarity index

卢鹏

展开 >

广州商学院现代信息产业学院,广东 广州 511363

红外图像去噪 局部偏差 最小二乘拟合 特征相似指数

2024

传感技术学报
东南大学 中国微米纳米技术学会

传感技术学报

CSTPCD北大核心
影响因子:1.276
ISSN:1004-1699
年,卷(期):2024.37(12)