首页|无人机轨迹跟踪中的气压和超声波传感器数据融合控制

无人机轨迹跟踪中的气压和超声波传感器数据融合控制

扫码查看
无人机在轨迹跟踪过程中,气压和超声波传感器受加油机尾涡等因素干扰,无法准确地控制无人机飞行高度、速度和航向.为此,在气压和超声波传感器数据融合条件下实现无人机轨迹跟踪控制方法.构建无人机动力学方程,针对其动力学特点,设计无人机指令,对气压传感器和超声波传感器中的数据进行融合,结合融合结果,设计无人机指令获取无人机的角速率快回路和姿态角慢回路,并输入到模糊神经网络中,实现无人机轨迹的跟踪控制.实验结果表明,所提方法可将无人机的飞行高度控制在6 km附近,且留有一定的距离,在50 s内即可将速度控制在200 m/s,与加油机飞行速度保持一致,在100 s内调整到正确航向,具有较高的控制精度.
Data Fusion Control of Air Pressure and Ultrasonic Sensors in Unmanned Aerial Vehicle Trajectory Tracking
In the process of UAV track tracking,the pressure and ultrasonic sensors are disturbed by factors such as the tail vortex of the tanker,and can not accurately control the UAV flight altitude,speed and heading.To solve this problem,a trajectory tracking control method for unmanned aerial vehicles is implemented under the condition of data fusion of air pressure and ultrasonic sensors.The dy-namics equation of the drone is constructed,the drone command is designed based on its dynamic characteristics,the data from the pres-sure sensor and ultrasonic sensor is fused,and the fusion results are combined to design the drone command to obtain the angular rate fast loop and attitude angle slow loop of the drone,which are input into the fuzzy neural network to achieve the tracking control of the drone trajectory.The experimental results show that the proposed method can control the flight height of the UAV near 6 km,and leave a certain distance.The speed can be controlled at 200 m/s within 50 s,which is consistent with the flight speed of the Gasoline pump,and can be adjusted to the correct heading within 100 s with high control accuracy.

UAVtrack tracking controlmulti-sensor fusionfuzzy neural networkaerial refuelingdynamic equation

宋亚磊、李立

展开 >

郑州商学院信息与机电工程学院,河南巩义 451200

无人机 轨迹跟踪控制 多传感器融合 模糊神经网络 空中加油 动力学方程

2024

传感技术学报
东南大学 中国微米纳米技术学会

传感技术学报

CSTPCD北大核心
影响因子:1.276
ISSN:1004-1699
年,卷(期):2024.37(12)