首页|面向并行大数据网络中传感节点定位异常识别

面向并行大数据网络中传感节点定位异常识别

扫码查看
并行大数据传感网络通常具有复杂的拓扑结构以及较多的节点数量,在大数据干扰和复杂性干扰下,影响传感网络异常节点识别的可靠性.为此,提出面向并行大数据网络中传感节点定位异常识别方法.建立布尔模型计算节点传输信道覆盖半径,根据载波调制方法估计传输信道中的特征参量,建立传感节点之间通信传输信道模型,获取节点状态及分布情况.构建分布式传感序列采样模型,采集传感节点特征序列,利用压缩感知方法实现对传感节点定位的异常识别.仿真结果表明,所提方法识别异常节点的能耗始终低于3 J,平均识别误差未超过0.35%,节点定位精度高于95%,识别传感异常节点的运行时间在2 ms以下,能够有效延长并行大数据网络的寿命.
Identification of Sensor Node Localization Anomalies in Parallel Big Data Networks
Parallel big data sensing networks typically have complex topological structures and a large number of nodes,which can affect the reliability of identifying abnormal nodes in the sensing network under big data interference and complexity interference.To this end,a method for identifying sensor node localization anomalies in parallel big data networks is proposed.Boolean model is established to calculate the coverage radius of the node transmission channel,the characteristic parameters in the transmission channel are estimated based on carrier modulation methods,a communication transmission channel model between sensor nodes is estimated,and the node sta-tus and distribution are obtained.The distributed sensor sequence sampling model is constructed,the sensor node feature sequence is collected,and the compressed sensing method is used to identify the anomaly of sensor node positioning.The simulation results show that the energy consumption of the proposed method for identifying abnormal nodes is always lower than 3 J,and the average recognition error does not exceed 0.35%,the node positioning accuracy is higher than 95%,and the running time for identifying sensor abnormal nodes is less than 2 ms,which can effectively extend the lifespan of parallel big data networks.

sensing nodesidentification of positioning anomaliescompressed sensingparallel big data networkboolean modelfeature collection

盛波、张跃进

展开 >

江苏联合职业技术学院常州艺术分院图文信息中心,江苏常州 213000

华东交通大学信息工程学院,江西南昌 330013

传感节点 定位异常识别 压缩感知 并行大数据网络 布尔模型 特征采集

2024

传感技术学报
东南大学 中国微米纳米技术学会

传感技术学报

CSTPCD北大核心
影响因子:1.276
ISSN:1004-1699
年,卷(期):2024.37(12)