首页|面向WSN网络拓扑突发流量不稳定状态识别的半监督学习模型构建

面向WSN网络拓扑突发流量不稳定状态识别的半监督学习模型构建

扫码查看
无线传感网络的拓扑结构具有高度自组织性和多跳传输不确定性,在遭受噪声、攻击行为等干扰时,容易导致网络拓扑结构发生不稳定状态,降低无线传感网络的可靠性和安全性.为此,在构建半监督学习模型的基础上实现WSN网络拓扑突发流量不稳定状态的识别.根据AE模型建立半监督学习模型对数据进行处理,提取数据关键特征,利用k-Means均值聚类算法进行聚类,获取数据关键点的低维特征向量,采用直方图标记数据特征类别,利用欧氏距离对处理后的距离进行计算,完成无线传感网络拓扑突发流量不稳定状态的识别.仿真结果表明:所提方法识别出的异常流量以及异常IP数据量分别在90和50个以上,识别误报率低于10%,具有良好的识别效果.
Semi Supervised Learning Model Construction for WSN Network Topology Burst Traffic Unstable State Identification
The topology of wireless sensor networks has a high degree of self-organization and multi hop transmission uncertainty.When subjected to interference such as noise and attack behavior,it is easy to cause unstable network topology,reducing the reliability and se-curity of wireless sensor networks.Therefore,based on the construction of a semi supervised learning model,the identification of unstable states of burst traffic in WSN network topology is realized.Based on the AE model,a semi supervised learning model is estab-lished to process the data,the key features of the data are extracted,k-Means clustering algorithm is used to cluster,the low dimensional feature vectors of the key points of the data are obtained,histogram is used to mark the data feature categories,Euclidean distance is used to calculate the processed distance,and the identification of the unstable state of the burst traffic in the wireless sensor network to-pology is completed.The simulation results show that the proposed method identifies more than 90 abnormal traffic and 50 abnormal IP data,with a recognition false alarm rate of less than 10%,and has good recognition performance.

wireless sensor networkidentification of unstable states of sudden traffic flowsemi supervised learning modelhistogramk-Means clustering algorithm

顾全、张薇

展开 >

江苏联合职业技术学院盐城机电分院,江苏盐城 224000

华东交通大学软件学院,江西南昌 330013

无线传感网络 突发流量不稳定状态识别 半监督学习模型 直方图 k-Means均值聚类算法

2024

传感技术学报
东南大学 中国微米纳米技术学会

传感技术学报

CSTPCD北大核心
影响因子:1.276
ISSN:1004-1699
年,卷(期):2024.37(12)