首页|基于RFID的人体姿态识别方法研究

基于RFID的人体姿态识别方法研究

扫码查看
人体姿态感知是未来智能护理场景的主要挑战之一.然而,视觉技术会涉及遮挡、光线条件、侵犯隐私等问题;可穿戴运动跟踪设备会增加入体负担,降低舒适性.针对以上问题,提出了一种基于射频识别(RFID)的方法进行全肢体姿态估计,能够有效克服遮挡、穿戴舒适性差等问题.首先基于相位差信息提出了一种细粒度肢体运动模型,通过构建似然函数来进行人体关节角度估计;引入正运动学构建多肢体联合运动模型,结合双天线融合算法进行三维关节角度估计;最后结合人体骨骼模型与肢体关节角度来重建人体姿态.实验结果以Kinect 2.0为标准,测得的四肢平均关节角度误差约为6°,平均关节位置误差约为4cm,表明该系统可以有效地实时监测全肢体姿态.
Study on human posture recognition method based on RFID
Human posture perception is one of the major challenges in future intelligent nursing scenarios.However,vision techniques can involve issues such as occlusion,light conditions,and invasion of privacy;wearable motion tracking devices can increase the burden on human body and reduce comfort.Aiming at the above problems,a method based on radio frequency identification(RFID)for full-limb pose estimation is proposed,which can effectively overcome the problems of occlusion and wearability comfort.Firstly,based on the phase difference information,a fine-grained limb motion model is proposed,the angle of human joints is estimated through the construction of likelihood function,the forward kinematics are introduced to build multi-body joint motion model,and then combine with double antenna fusion algorithm for three-dimensional joint angle estimation.Finally,combined with human body skeleton model and body joint angle to rebuild the body posture.Experimental results using Kinect 2.0 as the standard,the measured average joint angle error is about 6°,the average joint position error is about 4 cm,indicating that the system can effectively monitor whole-body posture in real-time.

radio frequency identification(RFID)phase differencehuman body posturewearable device

夏资厚、刘吉晓、刘均益、郭士杰

展开 >

河北工业大学机械工程学院河北省机器人感知与人机融合重点实验室,天津 300401

智能康复装置与检测技术教育部工程研究中心,天津 300401

射频识别 相位差 人体姿态 可穿戴设备

河北省重点研发计划资助项目国家自然科学基金资助项目

19211817D61871173

2024

传感器与微系统
中国电子科技集团公司第四十九研究所

传感器与微系统

CSTPCD北大核心
影响因子:0.61
ISSN:1000-9787
年,卷(期):2024.43(1)
  • 1