首页|融合人脸图像深度和外观特征的BMI估计方法

融合人脸图像深度和外观特征的BMI估计方法

扫码查看
身体质量指数(BMI)是人类健康重要指标.从2D正脸图像中估计3D人脸信息并提出一个端到端BMI估计框架,以进一步提高BMI估计性能.首先,计算人脸468个3D关键点,并根据关键点相对头部质心的深度绘制深度人脸图;其次,提取人脸图像的方向梯度直方图(HOG)并可视化以表示外观特征;最后,利用卷积神经网络(CNN)VGGNet、ResNet分别对深度人脸图和HOG进行特征提取,并使用Hadamard积融合2个骨干网络的特征以估计BMI.与目前已有方法的对比实验中,本文提出方法在2个公开数据集上的整体平均绝对误差(MAE)分别比最优结果低0.38和1.上述实验结果证明了本文提出的融合3D人脸图像深度和外观特征的BMI估计方法的有效性.
BMI estimation method fuses face image depth and appearance features
Body mass index(BMI)is an important indicator of human health.3D face information is estimated from 2D frontal images and a end-to-end BMI estimation framework is proposed to further improve the estimation performance of BMI.Firstly,468 3D key points of human face is calculated and facial depth image is drawn according to the depth of key points to head center of mass.Secondly,histogram of oriented gradient(HOG)of human face image is extracted and visualized to represent appearance features.Finally,convolutional neural network(CNN),VGGNet and ResNet are used for feature extraction on depth face image and HOG.Then,Hadamard product is used to fuse the features of the two backbone networks to estimate BMI.In the comparative experiments with existing methods on the two public datasets,the overall mean absolute error(MAE)of the proposed method is reduced by 0.38 and 1,respectively.The above experimental results show that the effectiveness of the proposed BMI estimation method which fuses the 3D face image depth and appearance characteristics.

body mass index(BMI)estimation3D facial landmarkface mesh modelhistogram of oriented gradient(HOG)deep convolutional neural network(DCNN)

向成豪、郑秀娟、庄嘉良、张畅

展开 >

四川大学电气工程学院,四川成都 610065

身体质量指数估计 人脸3D关键点 人脸网格模型 方向梯度直方图 深度卷积神经网络

成都市重点研发支撑计划技术创新研发项目

2020-YF05-00056-SN

2024

传感器与微系统
中国电子科技集团公司第四十九研究所

传感器与微系统

CSTPCD北大核心
影响因子:0.61
ISSN:1000-9787
年,卷(期):2024.43(1)
  • 3