首页|基于HMSD和改进的显著性检测的图像融合

基于HMSD和改进的显著性检测的图像融合

扫码查看
针对由于可见光与红外图像的特点不同,使得融合图像中会存在目标不突出、对比度低、伪影多的问题,提出了一种基于混合多尺度分解和改进的显著性检测的红外与可见光图像融合方法.利用梯度引导滤波器的边缘保持特性和高斯滤波器的平滑特性将红外和可见光分解为不同特征的层次.对不同层次的图像采用不同的融合策略,针对基层,使用一种改进的显著性检测进行融合.结合各层融合的子图像来重构的融合图像具有突出目标和清晰背景.实验结果表明:所提出的方法与其他经典融合算法相比,融合质量更高、视觉效果更好.
Image fusion based on HMSD and improved saliency detection
Aiming at the problem that different characteristics of visible images and infrared images may results in less prominent targets,low contrast,and more artifacts in fused image,a fusion method of infrared and visible images based on hybrid multi-scale decomposition and improved saliency detection is proposed.The infrared and visible light are decomposed into different feature levels by using the edge preserving property of gradient guided filter and the smoothing property of Gaussian filter.Different fusion strategies are adopted for images at different levels,and an improved saliency detection is used for fusion at the base level.The fused image reconstructed by combining fused sub-images of each level has prominent targets and clear backgrounds.Experimental results show that the proposed method has higher fusion quality and better visual effects compared to other typical fusion algorithms.

image fusiongradient guided filtermulti-scale decompositionsaliency detection

吴阳阳、李旭、张鹏泉

展开 >

杭州电子科技大学电子信息学院,浙江杭州 310018

图像融合 梯度引导滤波器 多尺度分解 显著性检测

2024

传感器与微系统
中国电子科技集团公司第四十九研究所

传感器与微系统

CSTPCD北大核心
影响因子:0.61
ISSN:1000-9787
年,卷(期):2024.43(1)
  • 1