首页|基于改进YOLOv5s网络模型的火灾图像识别方法

基于改进YOLOv5s网络模型的火灾图像识别方法

扫码查看
提出了一种基于改进YOLOv5s网络模型的火灾图像识别方法.通过引入注意力机制改进特征提取网络,提高模型对特征的学习能力;通过添加大尺度检测层改进多尺度检测机制,执行K-Means聚类算法改进先验框,增强模型对小目标的识别能力.在实验数据集上的测试结果表明:改进的YOLOv5s网络模型相比原始模型在精确率、召回率和平均精度均值(mAP)指标上均有提升.改进模型的mAP为85.72%,帧率达54.66fps;在置信度上有了明显提升,对多目标和小目标的识别效果更好,并且有效降低了漏检和误检情况.所提出的火灾图像识别方法可适用于安防监控系统或智能机器人.
Fire image recognition method based on improved YOLOv5s network model
A fire image recognition method based on improved YOLOv5s network model is proposed.Feature extraction network is improved by introducing attention mechanism to improve the learning ability of the model to learn about feature.Multi-scale detection mechanism is improved by adding large-scale detection layer,and K-Means clustering algorithm is implemented to improve the anchor box,which enhances recognition ability of the model for small targets.Test results on the experimental dataset show that the improved YOLOv5s network model has improved in terms of precision,recall and mean average precision(mAP)comparing with the original model.The mAP of improved model is 85.72%,and the frame rate reaches 54.66 fps.The improved model has a significant improvement in the level of confidence,the recognition effect on multiple targets and small targets is better,and the missed and false detections are effectively reduced.The proposed fire image recognition method is applicable for security monitoring systems and intelligent robots.

fire recognitionattention mechanismmulti-scale detectionYOLOv5s network model

梁金幸、赵鉴福、周亚同、史宝军

展开 >

河北工业大学省部共建电工装备可靠性与智能化国家重点实验室,天津 300401

河北工业大学机械工程学院河北省机器人感知与人机融合重点实验室,天津 300401

河北工业大学电子信息工程学院,天津 300401

火灾识别 注意力机制 多尺度检测 YOLOv5s网络模型

国家重点研发计划资助项目国家自然科学基金资助项目河北省重点研发计划资助项目河北省自然科学基金资助项目

2019YFB1312102U20A2020120311803DE2019202338

2024

传感器与微系统
中国电子科技集团公司第四十九研究所

传感器与微系统

CSTPCD北大核心
影响因子:0.61
ISSN:1000-9787
年,卷(期):2024.43(1)
  • 6