首页|基于深度学习的电解电容识别与极性检测

基于深度学习的电解电容识别与极性检测

扫码查看
针对工程中印刷电路板(PCB)上的电解电容不易识别、极性难以检测的问题,研究了一种基于深度学习的电解电容识别与极性检测方法.对于电容检测问题,提出了一种基于YOLOv5 的改进算法,该算法在YOLOv5 的骨干(backbone)融合Swin Transformer模块,提升模型的特征提取能力,在颈部融合了双向金字塔网络(BiFPN)模块,提高了网络的特征融合能力;对于电容极性检测,提出了一种语义分割结合形态学处理的方法,该方法能够分割电容基圆区域与极性区域然后有效检测电解电容的极性方向.实验结果表明,电容的识别精度达到96.9%,电容的分割精度达到93.9%,极性方向检测准确率达到99.1%,相比于目前电解电容极性检测较好的方法,所提方法有较好的鲁棒性,满足检测需求.
Electrolytic capacitor identification and polarity detection based on deep learning
Aiming at the problem that electrolytic capacitors on printed circuit board(PCB)in engineering are difficult to identify and their polarity is difficult to detect,an electrolytic capacitor identification and polarity detection method based on deep learning is studied.For the capacitance detection problem,an improved algorithm based on YOLOv5 is proposed.This algorithm integrates the Swin Transformer module on the backbone of YOLOv5 to improve the feature extraction capability of the model,and integrates the bi-directional feature pyramid network(BiFPN)module on the neck to improve the feature fusion capability of the network.For capacitor polarity detection,a method of semantic segmentation combined with morphological processing is proposed.This method can segment the base circle area and polar area of the capacitor and then effectively detect the polar direction of the electrolytic capacitor.Experimental results show that the capacitor identification precision reaches96.9%,the capacitor segmentation precision reaches93.9%,and the polarity direction detection accuracy reaches99.1%.Compared with the current detecting method of the polarity of electrolytic capacitors,the proposed method has better robustness and meets the detection requirements.

deep learningelectrolytic capacitorpolarity detectiontarget detectionsemantic segmentationelectronic component

汪威、王冲、黄旭东、张伟伦、曹金龙、胡新宇

展开 >

湖北工业大学机械工程学院,湖北武汉 430068

深度学习 电解电容 极性检测 目标检测 语义分割 电子元器件

国家自然科学基金资助项目

61976083

2024

传感器与微系统
中国电子科技集团公司第四十九研究所

传感器与微系统

CSTPCD北大核心
影响因子:0.61
ISSN:1000-9787
年,卷(期):2024.43(2)
  • 4