首页|基于卷积注意力机制的2D-LiDAR实时人体检测算法

基于卷积注意力机制的2D-LiDAR实时人体检测算法

扫码查看
针对激光雷达(LiDAR)数据稀疏且信息含量低,难以识别人体特征的难题,提出一种基于卷积注意力机制的人体腿部实时检测方法.通过深度引导的滑动窗口对激光点信息预处理,使对象在不同的距离上有相同的特征信息.通过时间信息聚合,获得LiDAR数据更丰富的空间表现,减少运算时间.通过卷积注意力模块与自回归模型卷积神经网络,对空间邻域关联错位的特征进行分析.为验证本文提出算法对行人腿部的检测效果,在DROW验证集的3 种评估半径下,曲线下面积(AUC)提高21%以上,F1 提高14%以上,检测时间平均降低13 ms.实验结果表明:本文算法相比于DROW算法具有更高的检测精度与更快的运算速度.
2 D-LiDAR real-time human detection algorithm based on convolutional attention mechanism
Aiming at the problem of sparse and low information content of LiDAR data,which makes it difficult to recognize human features,a real-time detection method for human legs based on convolution attention mechanism is proposed.The laser point information is preprocessed by a depth-guided sliding window,so that the object has the same feature information at different distances.Through aggregation of time information,more abundant spatial representation of LiDAR data can be obtained,which reduces the operation time.The characteristics of the associated dislocation with spatial neighborhoods are analyzed by the convolution attention module and the autoregression model.To verify the detection effect of the proposed algorithm on pedestrian legs,under three evaluation radius of DROW validation set,area under the curve(AUC)is increased by more than 21%,F1 is increased by more than 14%,and detection time is reduced by 13 ms on average.The experimental results show that this algorithm has higher detection precision and faster operation speed than DROW algorithm.

1D-CNNattention mechanism(AM)2D-LiDARhuman leg detection

刘鹏华、郑宝志、姚瀚晨、戴厚德

展开 >

厦门理工学院电气工程与自动化学院,福建厦门 361024

中国科学院海西研究院泉州装备制造研究中心,福建泉州 362216

一维卷积神经网络 注意力机制 二维激光雷达 人体腿部识别

中国科学院对外合作重点项目

121835KYSB20190069

2024

传感器与微系统
中国电子科技集团公司第四十九研究所

传感器与微系统

CSTPCD北大核心
影响因子:0.61
ISSN:1000-9787
年,卷(期):2024.43(2)
  • 3