首页|基于眼动信号的感兴趣检测方法研究

基于眼动信号的感兴趣检测方法研究

扫码查看
为了使机器智能达到人类的识别能力,需要提供标注的难例样本.常用的键盘、鼠标等标注方式效率较低,基于眼动信号的标注方式无需手动操作,但目前研究多采用依赖特征工程的浅层模型实现感兴趣检测以标注样本.针对浅层模型存在的问题,基于特征通道权重重分配多尺度残差网络模型对注视序列分类以实现感兴趣检测,并通过对比实验验证本文方法的有效性.实验结果表明:提出的多尺度残差网络模型分类精度达到96%,较现有基于浅层模型的方法和未改进的基于深层模型的方法,显著提升了感兴趣检测的精度和鲁棒性.
Research on interest detection method based on eye movement signal
In order to make the machine intelligence reach human's identification capabilities,there is a need to provide a labeled sample which is hard to identify.Efficiency of commonly used methods such as keyboard,mouse,and so on,are low.The labeling method based on eye movement signal is not required to operate manually,but current studies mostly adopt shallow layer models with dependent characteristic projects to achieve interest detection to label samples.Aiming at the problem of shallow-layer model,gaze sequences is classified to achieve interested detection based on feature channel weight redistribution multi-scale residual network model.Effectiveness of this method is verified by comparative experiments.Experimental results show that classification precision of the proposed multi-scale residual network model reaches 96%,compared with existing shallow layer model-based methods and non-modified methods based on deep layer model,the precision and robustness of interested detection are significantly improved.

gaze trackingeye movement event detectiontime series classificationmulti-scale residual networkdetection of interest

王新志、曾洪、张华宇、宋爱国

展开 >

东南大学仪器科学与工程学院,江苏南京 210096

视线追踪 眼动事件检测 时间序列分类 多尺度残差网络 感兴趣检测

国家自然科学基金资助项目

62173089

2024

传感器与微系统
中国电子科技集团公司第四十九研究所

传感器与微系统

CSTPCD北大核心
影响因子:0.61
ISSN:1000-9787
年,卷(期):2024.43(3)
  • 13