首页|低分辨率唇纹识别算法的性能评估

低分辨率唇纹识别算法的性能评估

扫码查看
为了进一步探索与研究适用于刑侦调查唇纹识别的网络模型,选取8 种不同的CNN模型分别从网络结构设计、核心模块以及各网络之间的联系等方面进行介绍,并在创建的低分辨率唇纹数据库上针对不同网络模型进行性能评估.同时以不同的学习率和网络层数也分别开展了实验.实验结果表明:轻量级模型MobileNetV2 实现了97.22%的识别率,其识别效果最佳且模型大小仅8.63 MB.通过实验验证了基于CNN模型识别算法也能良好地应用于唇纹识别任务,有效弥补了传统识别算法中存在的不足.
Performance evaluation of low-resolution lip print recognition algorithm
In order to explore and research on network models for lip print recognition criminal investigations,eight different CNN models are selected and introduced from the aspects of network structure design,core modules and the connection between networks,and the performance of different network models is evaluated on the created low-resolution lip print database.At the same time,experiments are also carried out with different learning rates and network layers.The experimental results show that the lightweight model MobileNetV2 achieves a recognition rate of 97.22%,and its recognition effect is the best,and model size is only 8.63 MB.It is verified through experiments that the recognition algorithm based on the CNN models can also be well applied to the lip print recognition task,which effectively makes up for the shortcomings of the traditional recognition algorithm.

lip print recognitionfeature extractionlow resolutionconvolutional neural network(CNN)deep learning

韦静、周洪成、牛犇

展开 >

盐城工学院机械工程学院,江苏盐城 224051

金陵科技学院电子信息工程学院,江苏南京 211169

唇纹识别 特征提取 低分辨率 卷积神经网络 深度学习

江苏省产学研合作项目

BY2021381

2024

传感器与微系统
中国电子科技集团公司第四十九研究所

传感器与微系统

CSTPCD北大核心
影响因子:0.61
ISSN:1000-9787
年,卷(期):2024.43(3)
  • 18