首页|基于改进Faster RCNN的微操作空间目标检测算法

基于改进Faster RCNN的微操作空间目标检测算法

扫码查看
将Faster RCNN引入微操作系统的目标检测之中.针对微操作空间下待检测目标存在尺度变化和在显微镜放大倍数较小时,待检测目标尺度过小、特征不明显的问题,提出了一种基于改进Faster RCNN的微操作空间目标检测算法.使用在图像分类任务中性能优越的深度残差网络提取图像的特征.引入递归特征金字塔网络,对特征进行融合.改进区域建议网络的采样策略,对损失函数进行优化.实验结果表明:这种改进的Faster RCNN算法能有效解决由于目标尺度变化和目标尺度过小带来的问题.相比通用的目标检测算法,该算法的准确度更高,速度更快,具有实际应用价值.
Micro operating space target detection algorithm based on improved Faster RCNN
Faster RCNN is introduced into the target detection of micro operating system.Aiming at the problems that there is scale change in target to be detected in micro operating space and scale of the target to be detected is too small and the feature is not obvious when microscope magnification is small,a micro operating space target detection algorithm based on improved Faster RCNN is proposed.Depth residual network with superior performance in image classification task is used to extract image features.Recursive feature pyramid network is introduced to fuse the features.The sampling strategy of the regional recommendation network is improved,and the loss function is optimized.Experimental result shows that the improved Faster RCNN algorithm can effectively solve the problems caused by the change of target scale and too small target scale.Compared with the general target detection algorithm,the algorithm has higher accuracy,faster speed and practical application value.

micro operating spacetarget detectionfeature extractionregion proposal network(RPN)sampling strategyloss function optimization

陈国良、庞裕双

展开 >

武汉理工大学机电工程学院,湖北武汉 430070

微操作空间 目标检测 特征提取 局域建议网络采样策略 损失函数优化

2024

传感器与微系统
中国电子科技集团公司第四十九研究所

传感器与微系统

CSTPCD北大核心
影响因子:0.61
ISSN:1000-9787
年,卷(期):2024.43(3)
  • 13