首页|基于蝗虫视觉的微型机器人避障方法研究

基于蝗虫视觉的微型机器人避障方法研究

扫码查看
为提高机器人自主避障的稳定性和可靠性,通过对蝗虫神经系统中具有碰撞预警能力的小叶巨大运动检测器(LGMD)神经网络进行优化处理,构建适用于嵌入式微型机器人的仿生视觉避障系统.针对LGMD网络在黑暗环境中碰撞感知性能较差,将传统图像处理算法与仿生网络相结合,通过融合拉普拉斯锐化和高斯模糊的激励来增强碰撞对象的扩展边缘,提出基于图像增强的碰撞检测神经网络(LGMD-LS).利用MATLAB软件对模型进行视频仿真分析,结果表明:相较于LGMD模型,改进算法在黑暗环境中能有效识别迫近障碍物,具有较好的鲁棒性.在自制微型机器人上进行实物验证,结果表明:机器人在黑暗场景中能够有效避障,验证了算法的可靠性.为应用于实际场景下机器人碰撞检测提供参考依据.
Research on obstacle avoidance method of micro robot based on locust vision
In order to improve the stability and reliability of autonomous obstacle avoidance of robots,a bionic visual obstacle avoidance system suitable for embedded micro robots is constructed by optimizing the lobula giant movement detector(LGMD)neural network of locust with collision warning ability in the grasshopper neural system.Aiming at the poor collision perception performance of LGMD network in dark environment,traditional image processing algorithm is combined with the bionic network.By fusing the excitation of Laplace sharpening and Gaussian blur to enhance the extended edge of the collision object,a collision detection neural network based on image enhancement(LGMD-LS)is proposed.The video simulation analysis of the model using MATLAB software shows that compared with LGMD model,the improved algorithm can effectively identify approaching obstacles in dark environment and has better robustness.Physical verification is carried out on the self-made micro robot.The results show that the robot can effectively avoid obstacles in dark scenes,which verifies the reliability of the algorithm.It provides a reference basis for robot collision detection in practical scenes.

mobile robotlocust visual neural networkdynamic obstacle avoidancecollision detection

汪杰、雷斌、蒋林、李港、苏冲

展开 >

武汉科技大学机械自动化学院,湖北武汉 430081

武汉科技大学机器人与智能系统研究院,湖北武汉 430081

移动机器人 蝗虫视觉神经网络 动态避障 碰撞检测

国家重点研发计划湖北省自然科学基金

2019YFB13100002018CFB626

2024

传感器与微系统
中国电子科技集团公司第四十九研究所

传感器与微系统

CSTPCD北大核心
影响因子:0.61
ISSN:1000-9787
年,卷(期):2024.43(4)
  • 15