首页|基于动态网络的文本敏感信息感知脑响应检测模型

基于动态网络的文本敏感信息感知脑响应检测模型

扫码查看
针对文本敏感信息感知过程复杂和个体差异大造成敏感信息感知脑响应潜伏期不确定性的问题,提出了一种基于动态卷积神经网络的脑响应检测模型——DyCNN_CBAM.该模型通过增加的动态卷积模块,让每层的卷积参数在训练的时候随着输入可变,可提升模型的尺寸与容量.然后在模型第一、二层后增加的注意力机制模块,自动计算贡献度较高的时空信息.实验结果表明:该模型比现有的单尺度模型平均分类准确率提高了 4%,F1分数提高6.7%,同时比现有多尺度网络平均分类准确率提高了 2%,F1分数提高1.2%.此外,在公开数据集上取得最好的F1分数.由此说明,该网络更够适应文本敏感信息感知脑信号潜伏期抖动性,有效地提升了文本敏感信息检测模型的稳定性.
Sensitive text information sensing brain response detection model based on dynamic network
Aiming at the uncerainty of brain response latency caused by complexity of text sensitive information perception process and individual differences,a brain response detection model,based on dynamic convolution neural network with convolutional block attention module(DyCNN_CBAM)is proposed.By adding dynamic convolution module in the model,the convolution parameters of each layer can be changed with the input during training,which can improve the size and capacity of the model.Then,the attention mechanism module is added after the first and second layers of the model to automatically calculate the time-space information with high contribution.Experimental results show that the model improves the average classification accuracy by 4%,and the F1 score by 6.7%,compared with the existing single-scale model;and improves the average classification accuracy by 2%and the F1 score by 1.2%,compared with the existing multi-scale network with simplified network structure.In addition,the best F1 score is obtained on the public dataset.It shows that the network is more suitable for the latency jitter of brain signal sensing by sensitive text information,and effectively improves the stability of sensitive text information detecting model.

sensitive text informationelectroencephalography(EEG)signaltarget detectiondynamic convolutional neural network(DyCNN)attention mechanism

李慧敏、曾颖、童莉、鲁润南、闫镔

展开 >

郑州大学网络空间安全学院,河南郑州 450001

战略支援部队信息工程大学信息系统工程学院,河南郑州 450001

文本敏感信息 脑电信号 目标检测 动态卷积神经网络 注意力机制

2024

传感器与微系统
中国电子科技集团公司第四十九研究所

传感器与微系统

CSTPCD北大核心
影响因子:0.61
ISSN:1000-9787
年,卷(期):2024.43(4)
  • 13