首页|基于中心修正网络和分耦检测头的三维目标检测算法

基于中心修正网络和分耦检测头的三维目标检测算法

扫码查看
本文提出一种基于中心修正网络和分耦检测头的三维目标检测算法.首先,采用三通道图像块表现形式处理三维输入信息,使用二维检测框滤除背景点,减少数据量;然后,采用基于CSP Darknet模块的中心修正网络将得到的图像块中心对齐到目标坐标系下的真实中心;最后,使用基于1×1 卷积的分耦检测头分别对参数化三维包围框的类别和残差值进行分类和回归.实验结果表明,改进的检测算法在KITTI数据集的简单、中等、困难3 种模式下的3D平均精度较同类型算法分别提高了2.82,5.54 和3.81,取得了较好的检测结果.
3D target detection algorithm based on central correction network and decoupling detector
A 3D target detection algorithm based on central correction network and decoupling detecting probe is proposed.Firstly,three-channel image block representation is used to process the three-dimensional(3D)input information,and two-dimensional(2D)detection frame is used to filter the background points,so as to reduce the amount of data.Then,the center correction network based on CSP Darknet module is used to align the center of the obtained image block to the real center in the target coordinate system.Finally,a decoupling detecting probe based on 1×1 convolution is used to classify and regress the categories and residual values of the parameterized 3D bounding boxes.The experimental results show that the 3D average precision of the improved detection algorithm in the simple,medium and difficult modes of KITTI dataset is improved by 2.82,5.54 and 3.81 than that of the same type of algorithm,respectively,and better detection results are obtained.

CSP Darknet moduledecoupling detecting probe3D target detection

涂雅培、高瑜翔、吴美霖、唐芷宣

展开 >

成都信息工程大学通信工程学院,四川成都 610225

气象信息与信号处理四川省高校重点实验室,四川成都 610225

CSP Darknet模块 分耦检测头 三维目标检测

四川省教育厅高等学校创新团队项目

15TD0022

2024

传感器与微系统
中国电子科技集团公司第四十九研究所

传感器与微系统

CSTPCD北大核心
影响因子:0.61
ISSN:1000-9787
年,卷(期):2024.43(5)
  • 15