首页|基于广义回归神经网络的视觉球形机器人建模

基于广义回归神经网络的视觉球形机器人建模

扫码查看
由于球形机器人具有复杂的机械结构和特殊的运动方式,导致其动力学模型具有非线性、多变量、强耦合、参数不确定等复杂因素,因此难以建立精确的数学模型.针对上述问题,设计了一种改进广义回归神经网络(GRNN)对其进行建模.首先,获取基于机理模型的球形机器人实测数据;然后,基于实测数据训练出改进GRNN模型并分析其预测效果;最后,分别基于改进GRNN和机理模型,设计球形机器人的控制器进行自平衡实验,前者比后者受到干扰时的波动幅度更小、调节时间短了近1s.实验结果证明了所设计建模方法的可行性和有效性.
Visual spherical robot modeling based on generalized regression neural network
Due to complex mechanical structure and special motion mode of the spherical robot,its dynamic model is characterized by nonlinear,multivariable,strong coupling,parameter uncertainty and other complex factors,so it is difficult to establish an accurate mathematical model.Aiming at the above problems,an improved generalized regression neural network(GRNN)is designed for modeling.Firstly,the measured data of the spherical robot based on the mechanism model are obtained.Then,an improved GRNN model is trained based on the measured data and its prediction effect is analyzed.Finally,the controller of the spherical robot is designed based on the improved GRNN and the mechanism model respectively for self-balancing experiments.The fluctuation amplitude of the former is smaller and the adjustment time is shorter than that of the latter by nearly 1 s.Experimental results show that the proposed modeling method is feasible and effective.

spherical robotvision devicemodeling of dynamicsgrey wolf optimization(GWO)algorithm

翟光耀、章政、郭昱琛、黄卫华、翟民

展开 >

武汉科技大学机器人与智能系统研究院,湖北武汉430081

球形机器人 视觉装置 动力学建模 灰狼优化算法

国家自然科学基金资助项目

61773298

2024

传感器与微系统
中国电子科技集团公司第四十九研究所

传感器与微系统

CSTPCD北大核心
影响因子:0.61
ISSN:1000-9787
年,卷(期):2024.43(6)
  • 20