传感器与微系统2024,Vol.43Issue(6) :125-128.DOI:10.13873/J.1000-9787(2024)06-0125-04

基于深度神经网络的室内定位算法

Indoor localization algorithm based on deep neural network

乔寅嵩 张大龙 韩刚涛 郭仕勇 苗慧 张呈
传感器与微系统2024,Vol.43Issue(6) :125-128.DOI:10.13873/J.1000-9787(2024)06-0125-04

基于深度神经网络的室内定位算法

Indoor localization algorithm based on deep neural network

乔寅嵩 1张大龙 1韩刚涛 1郭仕勇 1苗慧 1张呈1
扫码查看

作者信息

  • 1. 郑州大学网络空间安全学院,河南郑州450002
  • 折叠

摘要

提出了一种基于深度学习的接收信号强度指示(RSSI)指纹定位算法.该算法将深度神经网络引入到指纹定位的2个阶段中:离线阶段对不同遮挡情况的指纹库进行特征训练,其中指纹数据作为输入,不同遮挡情况的指纹库编号作为标签;在线阶段将实时接收到的数据送入到网络中进行指纹库匹配,然后结合改进的加权K近邻(WKNN)算法进行定位.通过对比实验结果表明:所提算法的定位精度优于其他定位算法,有着很好的定位性能.

Abstract

A received signal strength indication(RSSI)fingerprint positioning algorithm based on deep learning is proposed.The algorithm introduces the deep neural network(DNN)into two stages of fingerprint positioning:the offline stage performs feature training on the fingerprint database of different occlusion conditions,in which the fingerprint data is used as input,and the fingerprint database number of different occlusion conditions is used as the label;in the online stage,the real-time received data is sent to the network for fingerprint database matching,and then combined with the improved weighted K-nearest neighbor(WKNN)algorithm for positioning.Comparison experimental results show that the positioning precision of the proposed algorithm is prior to other positioning algorithms,and it has good positioning performance.

关键词

室内定位/指纹定位/接收信号强度指示

Key words

indoor positioning/fingerprint positioning/received signal strength indication(RSSI)

引用本文复制引用

基金项目

国家自然科学基金青年科学基金资助项目(62101504)

出版年

2024
传感器与微系统
中国电子科技集团公司第四十九研究所

传感器与微系统

CSTPCD北大核心
影响因子:0.61
ISSN:1000-9787
参考文献量13
段落导航相关论文