传感器与微系统2024,Vol.43Issue(6) :153-156,160.DOI:10.13873/J.1000-9787(2024)06-0153-04

基于轻量级卷积神经网络的零件位姿识别算法

Part pose recognition algorithm based on lightweight CNN

周旺 于微波 杨宏韬
传感器与微系统2024,Vol.43Issue(6) :153-156,160.DOI:10.13873/J.1000-9787(2024)06-0153-04

基于轻量级卷积神经网络的零件位姿识别算法

Part pose recognition algorithm based on lightweight CNN

周旺 1于微波 1杨宏韬1
扫码查看

作者信息

  • 1. 长春工业大学电气与电子工程学院,吉林长春130012
  • 折叠

摘要

针对目前基于卷积神经网络(CNN)的识别检测算法存在参数量多、计算量大、内存占用大以及资源消耗过多的问题,基于YOLOv3网络结构的优势,提出了一种轻量级的识别检测网络EfficientNet-B0-YOLOv3.该网络不仅可以实现零件的位姿识别,而且可识别出零件的各个面,在具备高识别检测精度的同时,降低了网络的参数量和计算量,而且训练好的网络模型大小只有41.10 MB,可以降低资源消耗,在工业应用中,降低内存占用,更容易嵌入设备进行使用.

Abstract

Aiming at problems of current recognition and detection algorithms based on convolutional neural network(CNN),such as a large number of parameters,a huge amount of calculation,a large amount of memory and excessive resource consumption,a lightweight recognition and detection network based on the advantages of the YOLOv3,network structure,EfficientNet-B0-YOLOv3 is proposed.This network can not only realize pose recognition of part,but also can recognize each face of the part.It has high recognition and detection precision,while reducing the amount of parameters and computation of the network,and the size of the trained network model is only 41.10 MB,which can reduce resource consumption.In industrial applications,it reduces memory usage and makes it easier to be embedded devices for use.

关键词

YOLOv3/EfficientNet/零件位姿识别/轻量级卷积神经网络

Key words

YOLOv3/EfficientNet/part pose recognition/lightweight convolutional neural network

引用本文复制引用

基金项目

吉林省教育厅项目(JJKH20210744KJ)

吉林省科技发展计划资助项目(20200401118GX)

出版年

2024
传感器与微系统
中国电子科技集团公司第四十九研究所

传感器与微系统

CSTPCD北大核心
影响因子:0.61
ISSN:1000-9787
参考文献量3
段落导航相关论文