首页|面向复杂场景的智能车辆局部路径规划算法

面向复杂场景的智能车辆局部路径规划算法

扫码查看
针对复杂道路环境的实时规划问题,提出一种新的智能车辆局部路径规划算法.首先,利用Frenet坐标系将车辆运动解耦为独立的横向和纵向运动.其次,根据车辆的初始配置和目标配置,借助多项式法求得车辆的路径集合.进行路径可行性检查得到候选路径集,并将行车风险场(DRF)理论和最小化加速度变化率引入到路径规划中,使规划出的路径更符合驾驶人的主观感受.最后,构建损失函数,选择损失函数最小的路径作为最优路径.结果表明,该方法能够在复杂场景下给出更合理的行车方案.
Local path planning algorithm for intelligent vehicles in complex scene
Aiming at the problem of real-time planning in complex road environments,a new intelligent vehicle local path planning algorithm is proposed.Firstly,the vehicle motion is decoupled into independent lateral and longitudinal motions using the Frenet coordinate system.Secondly,according to the initial configuration and target configuration of the vehicle,path set of vehicle are obtained through the polynomial method.Path feasibility check is performed to obtain candidate path set.And driving risk field(DRF)theory and minimized acceleration change rate are introduced into path planning to make the planned paths more consistent with the subjective perception of drivers.Finally,the loss function is constructed and the path that minimizes the loss function is chosen as the optimal path.The results show that the method can give more reasonable driving solution in complex scene.

driving risk field(DRF)Frenet coordinate systempath planningautonomous driving

闫春来、徐聪、刘咏诗、潘常春、孙凯

展开 >

齐鲁工业大学(山东省科学院)信息与自动化学院,山东济南250353

上海交通大学北斗导航与位置服务上海市重点实验室,上海200240

行车风险场 Frenet坐标系 路径规划 自动驾驶

山东省自然科学基金资助项目科技部重点研发计划资助项目

ZR2021MF0222019YFB1705800

2024

传感器与微系统
中国电子科技集团公司第四十九研究所

传感器与微系统

CSTPCD北大核心
影响因子:0.61
ISSN:1000-9787
年,卷(期):2024.43(6)
  • 4