首页|胎-路接触应力传感器的信号去噪方法研究

胎-路接触应力传感器的信号去噪方法研究

扫码查看
为了解决应变传感器在测量胎-路接触应力信号时的噪声干扰问题,提出一种基于自适应噪声完备集合经验模态分解(CEEMDAN)和小波软阈值的胎-路接触应力传感器的信号去噪方法.首先,将胎-路接触应力信号CEEMDAN分解为一系列从高频到低频排列的本征模态函数(IMF)分量;再根据能量值法判定出噪声主导IMF分量和信号主导IMF分量,并对噪声主导IMF分量进行小波软阈值去噪;最后,将去噪后的IMF分量和信号主导IMF分量进行重构,得到去噪后的胎-路接触应力信号.将所提方法分别与CEEMDAN去噪方法、小波软阈值去噪方法进行比较,结果表明:所提方法去噪后信号的信噪比(SNR)分别提高了33%和343%,均方根误差(RMSE)分别降低了64%和252%,说明所提方法的去噪效果更佳.
Research on signal denoising method for tire-road contact stress sensor
In order to solve the noise interference problem of strain sensors in measuring tire-road contact stress signals,a signal denoising method for tire-road contact stress sensors based on complete ensemble empirical mode decomposition based on adaptive noise(CEEMDAN)and wavelet soft thresholding is proposed. Firstly,the tire-road contact stress signal is CEEMDAN decomposed into a series of IMF components arranged from high frequency to low frequency by CEEMDAN. Then,the noise dominant intrinsic mode function(IMF)component and the signal dominant IMF component are determined according to the energy value method,and wavelet soft threshold denoising is performed on the noise dominant IMF component. Finally,the denoised IMF component and the signal dominated IMF component are reconstructed to obtain the denoised tire-road contact stress signal. The proposed method is compared with CEEMDAN denoising method and traditional wavelet soft thresholding denoising method, and the results show that the SNR of the denoised signal of the proposed method is improved by 33% and 343%, respectively,and the RMSE is reduced by 64% and 252%,respectively,which indicates that the proposed method is more effective in denoising.

strain sensortire-road contact stress signalCEEMDANwavelet soft threshold

周路路、关佳希、周兴林

展开 >

武汉科技大学机械自动化学院,湖北 武汉 430081

应变传感器 胎-路接触应力信号 自适应噪声完备集合经验模态分解 小波软阈值

国家自然科学基金资助项目

51827812

2024

传感器与微系统
中国电子科技集团公司第四十九研究所

传感器与微系统

CSTPCD北大核心
影响因子:0.61
ISSN:1000-9787
年,卷(期):2024.43(7)
  • 6