传感器与微系统2024,Vol.43Issue(7) :63-66,71.DOI:10.13873/J.1000-9787(2024)07-0063-04

基于平衡采样的主动半监督学习人类活动识别研究

Research on active semi-supervised learning for human activity recognition based on balanced sampling

郇战 刘艳 李志新 董晨辉 周帮文 秦王盛
传感器与微系统2024,Vol.43Issue(7) :63-66,71.DOI:10.13873/J.1000-9787(2024)07-0063-04

基于平衡采样的主动半监督学习人类活动识别研究

Research on active semi-supervised learning for human activity recognition based on balanced sampling

郇战 1刘艳 2李志新 1董晨辉 1周帮文 2秦王盛1
扫码查看

作者信息

  • 1. 常州大学微电子与控制工程学院,江苏 常州 213000
  • 2. 常州大学计算机与人工智能学院阿里云大数据学院,江苏 常州 213000
  • 折叠

摘要

基于可穿戴传感器的人类活动识别研究逐渐受到人们的广泛关注.本文提出了一种基于平衡采样的主动半监督模型,在挑选样本进行标注时,将样本的不确定性和多样性一并考虑在内,挑选出类别平衡的不确定性样本.确保训练后的模型对每个类都有很好的识别性能,从而提升整体分类结果.同时,为了全部利用标记和未标记样本的信息,将主动学习和半监督学习相结合,利用损失项信息不断更新网络参数,提升模型在低注释下的识别性能.该模型在2个公开数据集上得到了验证,在确保获得较优分类准确率的同时,可以大大减少样本的人工标注工作.

Abstract

Human activity recognition research based on wearable sensors has gradually attracts widespread attention. An active semi-supervised model based on balanced sampling is proposed. When selecting samples for labeling,the uncertainty and diversity of the samples are taken into account,and the uncertain samples with balanced categories are selected. Ensure that the trained model has good recognition performance for each class, thereby improve the overall classification results. At the same time,in order to fully utilize the information of labeled and unlabeled samples,active learning and semi-supervised learning are combined,the network parameters are continuously updated by using the loss item information to improve the recognition performance of the model under low annotation. The model has been verified on two public datasets,which can greatly reduce the manual labeling work of samples while ensuring better classification accuracy.

关键词

主动学习/半监督学习/查询策略/人类活动识别

Key words

active learning/semi-supervised learning/query strategies/human activity recognition

引用本文复制引用

基金项目

国家自然科学基金面上资助项目(61976028)

国家自然科学基金资助项目(61772248)

出版年

2024
传感器与微系统
中国电子科技集团公司第四十九研究所

传感器与微系统

CSTPCD北大核心
影响因子:0.61
ISSN:1000-9787
参考文献量1
段落导航相关论文