首页|基于点线面特征匹配的紧耦合激光雷达惯性里程计

基于点线面特征匹配的紧耦合激光雷达惯性里程计

扫码查看
激光雷达(LiDAR)里程计在室外受环境噪声干扰,其扫描匹配精度较低,由此带来的累积误差导致同步定位与建图(SLAM)在大范围场景下定位精度较差.针对上述问题,提出一种基于点线面特征匹配的紧耦合LiDAR惯性里程计(TP-LIO),在惯性测量单元(IMU)预积分点云去畸变基础上,利用点-线和点-面距离构建位姿估计代价函数,获得载体运动估计.结合IMU预积分与Scan-Context回环检测,通过因子图进行全局优化,实现IMU和LiDAR数据紧耦合.在KITTI数据集和实车实验下,对TP-LIO、ALOAM和LeGO-LOAM进行对比验证,结果表明:TP-LIO在大范围场景下累积误差更小,定位精度更高.
Tightly coupled LiDAR inertial odometry based on point-line-surface feature matching
LiDAR odometry is disturbed by environmental noise outdoors,which cause low scan matching precision,accumulated error caused by scan matching leads to poor positioning precision of simultaneous localization and mapping(SLAM)in large-scale scenes. Aiming at the above problem,a tightly-coupled LiDAR inertial odometry (TP-LIO )based on point-line-surface feature matching is proposed. On the basis of inertial measurement unit(IMU)pre-integration point cloud de-distortion,point-line and point-surface distances are used to construct pose estimation cost functions to obtain carrier motion estimation. Combined with IMU pre-integration and Scan-Context loop detection,global optimization is performed through factor graphs to achieve tight coupling of IMU and LiDAR data. In the KITTI dataset and real vehicle experiments,TP-LIO,ALOAM and LeGO-LOAM are compared and verified. The results show that TP-LIO has smaller cumulative error and higher positioning precision in a wide range of scenes.

simultaneous localization and mapping(SLAM)LiDARtightly-coupledloop detection

刘士良、马天力、高嵩、严瀚宇

展开 >

西安工业大学电子信息工程学院,陕西 西安 710021

同步定位与建图 激光雷达 紧耦合 回环检测

陕西省重点研发计划资助项目陕西省技术创新引导专项(基金)计划资助项目

2022GY-2422022QFY01-16

2024

传感器与微系统
中国电子科技集团公司第四十九研究所

传感器与微系统

CSTPCD北大核心
影响因子:0.61
ISSN:1000-9787
年,卷(期):2024.43(7)
  • 5