首页|基于分层聚合与高度语义信息感知的多任务网络

基于分层聚合与高度语义信息感知的多任务网络

扫码查看
针对现有多任务网络对各项任务关系以及城市场景图像内在特征的分析稍显不足的问题,提出基于分层聚合与高度语义感知的多任务网络.首先,为增强特征提取网络的能力,使用分层聚合模块学习多层特征间的相互依赖性,经过共享与独立设计,实现浅层特征与深层特征的融合,为不同下游任务馈送所需特征;其次道路场景图像中具有一定的高度差异性,水平分割相互之间的像素级分布有着显著不同,使用高度感知模块引入该先验信息,该结构简单高效.结果表明,所提方法在BDD100K的各项性能均优于同类方法,同时将车道线数据集TuSimple和CULane重新标注扩展为多任务进行测试,取得比现有方法更好的精度,验证方法的有效性.
Multi-task network based on hierarchical aggregation and height semantic information perception
Aiming at the problem of current multi-task networks lack analysis of relationships of multiple tasks and inherent characteristics of urban scene images,a multi-task network based on hierarchical aggregation and height semantic information perception is proposed. Firstly,in order to enhance the capacity of the feature extraction network,hierarchical aggregation module is used to learn the interdependence between multi-layer features. Through sharing and independant design,the fusion of shallow layer features and deep layer features is achieved to feed the required characteristics for different downstream tasks. Secondly,there is a certain degree of height difference in the road scene image,and the pixel-level distribution between the horizontal segmentation parts is significantly different. Height-aware module is used to introduce the prior information. The structure is simple and efficient. The results show that the proposed method outperforms similar methods in various performance metrics on BDD100K,and at the same time,lane line datasets TuSimple and CULane are re-labelled and expanded for multi-tasks test,achieves higher precision than existing methods,validating the effectiveness of the proposed algorithm.

autonomous drivingmulti-tasks networkhierarchical aggregationcross-layer attention

蔡林泽、周爱国、姚亮亮、符长虹

展开 >

同济大学机械与能源工程学院,上海 201804

自动驾驶 多任务网络 分层聚合 跨层注意力

2024

传感器与微系统
中国电子科技集团公司第四十九研究所

传感器与微系统

CSTPCD北大核心
影响因子:0.61
ISSN:1000-9787
年,卷(期):2024.43(7)
  • 2