传感器与微系统2024,Vol.43Issue(7) :128-131.DOI:10.13873/J.1000-9787(2024)07-0128-04

基于手机内置MEMS传感器的行人步数检测方法

Pedestrian step detection method based on mobile phone built-in MEMS sensor

赵桂玲 王续 梁伟东
传感器与微系统2024,Vol.43Issue(7) :128-131.DOI:10.13873/J.1000-9787(2024)07-0128-04

基于手机内置MEMS传感器的行人步数检测方法

Pedestrian step detection method based on mobile phone built-in MEMS sensor

赵桂玲 1王续 1梁伟东1
扫码查看

作者信息

  • 1. 辽宁工程技术大学测绘与地理科学学院,辽宁 阜新 123000
  • 折叠

摘要

手机内置微机电系统(MEMS)传感器具有零偏不稳定性和误差发散快等缺点.为了提高行人步数检测的准确性,基于图形用户界面(GUI),建立零偏校正、低通滤波和卡尔曼(Kalman)滤波3种误差处理模型.采用峰值域和时间域共同约束峰值的双特征检测方法,设计平稳前进和摆臂前进两种动态实验场景,检测行人步数.实验结果表明:在不同动态场景下,双特征检测行人步数的准确率均在95%以上,验证了所提算法的准确性和鲁棒性,满足行人步数检测的要求.

Abstract

Mobile phone built-in MEMS sensor has the disadvantages of instable zero-bias and fast error divergence. In order to improve the accuracy of pedestrian step detection,three error processing model:Zero-bias correction,low-pass filtering and Kalman filtering are established based on graphical user interface(GUI). Double-features detection method using peak domain and time domain to constrain peak value is adopted. Then,two dynamic experimental scenes of steady and swing-arm progresses are designd to detect pedestrian's steps. The experimental results show that detection accuracy of pedestrian 's steps detected by double-features detection method is above 95% in different dynamic scenes and the accuracy and robustness of the proposed algorithm are verified,satisfy the requirements of pedestrian's step detection.

关键词

微机电系统/图形用户界面/零偏校正/低通滤波/卡尔曼滤波

Key words

MEMS/graphical user interface(GUI)/zero-bias correction/low-pass filtering/Kalman filtering

引用本文复制引用

基金项目

辽宁省自然科学基金资助项目(2020-MS-303)

辽宁省教育厅一般项目(LJ2020JCL015)

地理信息工程国家重点实验室、自然资源部测绘科学与地球空间信息技术重点实验室联合基金资助项目(2022-01-11)

出版年

2024
传感器与微系统
中国电子科技集团公司第四十九研究所

传感器与微系统

CSTPCD北大核心
影响因子:0.61
ISSN:1000-9787
参考文献量6
段落导航相关论文