首页|基于轻量级卷积神经网络的车辆声学识别

基于轻量级卷积神经网络的车辆声学识别

扫码查看
车型识别技术对交通监测具有重要意义.针对行驶中车辆的视觉信息易受环境干扰等问题,提出了一种基于ShuffleNet V2的车辆声学特征识别模型S-ShuffleNet,包含对ShuffleNet V2网络深度的缩减以及深度可分离卷积(DSC)中卷积(Conv)核大小的改进,通过提取车辆声信号的对数-梅尔谱图(LMS)特征作为该模型的输入,进行车型识别.同时,将风、雨、雷暴噪声叠加在车辆音频上,以验证不同环境噪声的影响.实验结果表明:该模型参数量少、训练速度快,在VS10数据集上识别精度比基础网络ShuffleNet V2提高2.4%,识别准确率可达97.5%,与不同分类网络相比,S-ShuffleNet也具有良好性能.
Vehicle acoustic recognition based on lightweight CNN
Vehicle type recognition technology is of great significance for traffic monitoring. Aiming at the problems that visual information of moving vehicles is susceptible to be disturbed by environment,a vehicle acoustic feature recognition model S-ShuffleNet based on ShuffleNet V2 is proposed,which contains the reduction of the network depth of ShuffleNet V2 and the improvement of the convolutional kernel size in the depthwise separable convolution,the log-Mel spectrogram features of the vehicle acoustic signal are extracted as the input of the model for vehicle recognition. Meanwhile,wind,rain,and thunderstorm noise are superimposed on the vehicle audio to verify the effect of different environmental noises. The experimental results demonstrate that the model has a low number of parameters and high training speed,compared with the basic network ShuffleNet V2,the recognition speed is improved by 2. 4%,and the recognition speed on the VS10 dataset can reach 97. 5%. Compared to other different classification networks,S-ShuffleNet also has good performance.

vehicle type recognitionacoustic featurelog-Mel spectrogram (LMS )lightweightconvolutional neural network(CNN)environmental noise

封慧杰、赵红东、于快快、刘赫

展开 >

河北工业大学电子信息工程学院,天津 300401

光电信息控制和安全技术重点实验室,天津 300308

天津金沃能源科技股份有限公司,天津 300380

车型识别 声学特征 对数梅尔谱图 轻量级 卷积神经网络 环境噪声

天津市科技计划资助项目光电信息控制和安全技术重点实验室基金资助项目

21YDTPJC000502021JCJQLB055008

2024

传感器与微系统
中国电子科技集团公司第四十九研究所

传感器与微系统

CSTPCD北大核心
影响因子:0.61
ISSN:1000-9787
年,卷(期):2024.43(7)
  • 2