传感器与微系统2024,Vol.43Issue(7) :161-164.DOI:10.13873/J.1000-9787(2024)07-0161-04

改进的多传感器信息融合算法及其应用

Improved multi-sensor information fusion algorithm and its application

刘玉柱 屈蔷 曹东
传感器与微系统2024,Vol.43Issue(7) :161-164.DOI:10.13873/J.1000-9787(2024)07-0161-04

改进的多传感器信息融合算法及其应用

Improved multi-sensor information fusion algorithm and its application

刘玉柱 1屈蔷 1曹东1
扫码查看

作者信息

  • 1. 南京航空航天大学自动化学院,江苏 南京 211106
  • 折叠

摘要

针对量测噪声未知的问题,提出一种改进的多传感器信息融合方法,首先对量测噪声进行实时跟踪与估计,接着基于估计的量测噪声进行最优加权融合,解决常规加权法权值不是最优的问题,最后将融合的结果进行卡尔曼滤波,得到系统的状态估计.将改进的多传感器信息融合方法应用某型无人机(UAV)垂向高度信息融合系统中,经仿真验证,表明该方法具有一定的工程实用价值.

Abstract

Aiming at the problem that the measurement noise is unknown,an improved mul-ti-sensor information fusion method is proposed. Firstly,the measurement noise is tracked and estimated in real-time. Then,the measurement noise based on the estimation is optimally weighted and fused to solve the problem that the weight value of the conventional weighting method is not optimum. Finally,the fusion result is Kalman filtered carried out to obtain the state esti-mation of the system. The improved multi-sensor information fusion method is applied to the vertical altitude information fusion system of a UAV. The simulation results show that the me-thod has certain practical value in engineering.

关键词

卡尔曼滤波/信息融合/多传感器/噪声估计

Key words

Kalman filtering/information fusion/multi-sensor/noise estimation

引用本文复制引用

出版年

2024
传感器与微系统
中国电子科技集团公司第四十九研究所

传感器与微系统

CSTPCD北大核心
影响因子:0.61
ISSN:1000-9787
参考文献量6
段落导航相关论文