首页|结合改进YOLOv8n及SLAM的机器人自主巡检控制系统研究

结合改进YOLOv8n及SLAM的机器人自主巡检控制系统研究

扫码查看
本文提出了一种基于改进YOLOv8n及SLAM的室内安防机器人自主巡检控制系统方案.目标检测采用轻量化处理的YOLOv8n算法,使用GhostNet进行YOLOv8n的轻量级改进.达到降低计算量和内存消耗,同时提高目标检测速度的目的.改进后的YOLOv8n帧率相较于改进前速度提升50%,模型缩小为原来的63%,而识别的精确度仅下降5%左右.为提高机器人对未知环境的感知能力和自主性,使用了Cartographer算法.基于此算法,机器人可实现自主导航和地图构建,定位过程中估计值与实际值的横向偏差小于0.06 m;纵向偏差小于0.08 m;航向偏角小于16°.实验结果表明:该系统能够实现地图的精确构建以及目标火焰的快速检测,并实现实时预警.
Research on autonomous inspection control system of robot combined with improved YOLOv8 n and SLAM
A scheme of indoor security robot autonomous inspection control system based on improved YOLOv8n and SLAM is proposed.YOLOv8n algorithm of lightweight processing is adopted for target detection,and GhostNet is used to carry out lightweight improvement of YOLOv8n.Thus,the computation and memory consumption are reduced,and the speed of target detection is improved at the same time.The frame rate of the improved YOLOv8n is 50% higher than that before the improvement,the model is reduced to 63% of the original,and the recognition accuracy is only reduced by about 5%.In order to enhance the perception and autonomy of robots to unknown environment,Cartographer algorithm is used.Based on this algorithm,the robot can achieve autonomous navigation and mapping,and the lateral deviation between the estimated value and the actual value in the positioning process is less than 0.06 m;the longitudinal deviation is less than 0.08 m;course deflection angle is less than 16°.The experimental results show that the system can realize the accurate mapping and the rapid detection of target flame,and realize the real-time early warning.

security robotautonomous inspectionimproved YOLOv8naccident prevention

李俊萩、刘博文、张晴晖、强振平

展开 >

西南林业大学大数据与智能工程学院,云南昆明650224

安防机器人 自主巡检 改进YOLOv8n 事故预防

云南省科技厅农业基础研究联合专项国家自然科学基金地区基金森林生态大数据国家林业和草原局重点实验室重点项目

202301BD070001-127121630042022-BDK-05

2024

传感器与微系统
中国电子科技集团公司第四十九研究所

传感器与微系统

CSTPCD北大核心
影响因子:0.61
ISSN:1000-9787
年,卷(期):2024.43(8)