首页|基于色彩校正与亮度估计的水下低照度图像增强

基于色彩校正与亮度估计的水下低照度图像增强

扫码查看
针对水下低照度环境下光线衰减导致的色彩失真和人工光源导致的光照不均2个退化问题,本文提出一种基于色彩校正和亮度估计的水下低照度图像增强网络,称为LUcobe.LUcobe由色彩校正和亮度估计2个子网络组成.色彩校正子网络通过双色彩空间并结合注意力机制,提取最具辨别力的色彩特征,自适应地集成和突出显示.亮度估计子网络利用编解码器结构结合空洞卷积对图像亮度进行全局估计.最后,将亮度估计和色彩校正子网络的输出在通道选择模块进行结合,实现图像增强.实验结果表明:LUcobe能够有效改善水下低照度图像的不均匀光照和色彩偏差问题,与多种水下图像增强方法相比,在视觉效果和客观评价指标(PSNR,SSIM,MS-SSIM,MSE)上均取得更好的效果.
Low-illumination underwater image enhancement based on color correction and brightness estimation
Aiming at the two degradation problems of Imaging color distortion caused by light attenuation and uneven illumination caused by artificial light source in underwater low-illumination environment,an underwater low-illumination image enhancement network based on color correction and brightness estimation named LUcobe is proposed.LUcobe is composed of color correction sub network and brightness estimation sub network.The color correction sub network extracts the most discriminative color features through the dual color space and combines with the attention mechanism,and integrates and highlights them adaptively.The brightness estimation sub network uses the encoder-decoder structure and dilate convolution to globally estimate the illumination of the image.Finally,combines the output of the brightness estimation sub network with the output of the color correction sub network through selective channel module to achieve image enhancement.The experimental results show that LUcobe can effectively improve the uneven illumination and color deviation of the underwater low illumination image,and achieve better effect in visual effect and objective evaluation indexes (PSNR,SSIM,MS-SSIM,MSE) compared to other typical underwater image enhancement methods.

underwater low-illumination imagebrightness estimationcolor correction

宋巍、陈桥、刘亚玲、葛梦滢

展开 >

上海海洋大学信息学院,上海201306

上海大学工程训练国家级实验教学示范中心,上海200444

水下低照度图像 亮度估计 色彩校正 水下图像增强

国家自然科学基金

61972240

2024

传感器与微系统
中国电子科技集团公司第四十九研究所

传感器与微系统

CSTPCD北大核心
影响因子:0.61
ISSN:1000-9787
年,卷(期):2024.43(8)