首页|改进的激光雷达线段特征提取方法

改进的激光雷达线段特征提取方法

扫码查看
针对现有激光雷达(LiDAR)特征识别算法线段特征识别不够准确的问题,提出了一种改进的LiDAR线段特征识别算法.首先,基于改进的斜率差算法将连续的点进行聚类,找出所有的角点、断点和散点,并以断点为特征分割点集;接着,利用连续边缘跟踪算法剔除假断点;然后,使用改进的迭代适应点(IEPF)算法筛选基于斜率差算法找出的所有角点,得到真实的角点.最后,对分割并筛选后的特征点集进行最小二乘拟合,从而得到特征线段.实验结果表明:该方法相对现有特征识别算法在角点和断点的识别准确性上更高,因此提取的特征线段的长度鲁棒性也更好.
Improved method for line segment feature extracting of LiDAR
Aiming at the problem that the line segment feature recognition of the existing LiDAR feature recognition algorithm is not accurate enough,an improved line segment feature recognition algorithm of LiDAR is proposed.Firstly,continuous points are clustered based on the improved slope difference algorithm to find all corners,breakpoints and scattered points,and the breakpoint is used as the feature to segment the point set.Secondly,false breakpoints are eliminated by continuous edge tracking algorithm.Then,the improved iterative end point fit(IEPF)algorithm is used to filter all corner points found based on the slope difference algorithm,and the real corner points are obtained.Finally,feature line segment is obtained by least square fitting of the feature point set after segmentation and filtering so as to obtain feature line segment.The experimental results show that the method is more accurate than the existing feature recognition algorithms in corner point and breakpoint recognition,so the length robustness of the extracted feature line segment is better.

LiDARfeature recognitionslope difference algorithmiterative end point fit(IEPF)algorithm

邱德宪、匡兵、黄春德、崔更申

展开 >

桂林电子科技大学机电工程学院,广西桂林541004

桂林电子科技大学计算机与信息安全学院,广西桂林541004

激光雷达 特征识别 斜率差算法 迭代适应点算法

2024

传感器与微系统
中国电子科技集团公司第四十九研究所

传感器与微系统

CSTPCD北大核心
影响因子:0.61
ISSN:1000-9787
年,卷(期):2024.43(8)
  • 4