首页|基于RGB-D的像素级抓取检测算法研究

基于RGB-D的像素级抓取检测算法研究

扫码查看
针对物体姿态随机、外形不规则、抓取环境复杂等机械臂抓取问题,提出一种基于RGB-D的像素级抓取检测方法.首先,对Cornell数据集基于像素级重标注,并生成抓取标签;然后,提出一种多残差提取卷积神经网络(CRE-Net),增强网络特征提取效果;最后,搭建仿真抓取系统,进行算法验证.实验结果表明:位姿检测精度达到93.99%,在对抗性抓取中,单物体抓取成功率为94.0%,多物体抓取成功率为73.3% .
Research on pixel-level grabbing detection algorithm based on RGB-D
Aiming at the grabbing problems of robot arm,such as random object attitude,irregular shape and complex grabbing environment,a pixel-level grabbing detection method based on RGB-D is proposed.Firstly,the Cornell dataset is re-labeled based on pixel-level,and grabbing tags are generated.Then,a convolutional neural network for multiple residual extraction (CRE-Net)is proposed to enhance the effect of network feature extraction.Finally,a simulation grabbing system is built to verify the algorithm.The experimental results show that the precision of pose detection reaches 93.99%.In adversarial grabbing the success rate of single object grabbing is 94.0%,and the success rate of multi object grabbing is 73.3%.

plane grabbingdeep learningposition and attitude estimationresidual network

朱建军、李天顺、赵梦瑶

展开 >

吉林化工学院信息与控制工程学院,吉林吉林132022

平面抓取 深度学习 位姿估计 残差网络

吉林省科技发展计划

YDZJ202201ZYTS555

2024

传感器与微系统
中国电子科技集团公司第四十九研究所

传感器与微系统

CSTPCD北大核心
影响因子:0.61
ISSN:1000-9787
年,卷(期):2024.43(8)
  • 2